

DATA STRUCTURES AND

ALGORITHMS USING C#

C# programmers: no more translating data structures from C++ or Java to

use in your programs! Mike McMillan provides a tutorial on how to use data

structures and algorithms plus the first comprehensive reference for C# imple-

mentation of data structures and algorithms found in the .NET Framework

library, as well as those developed by the programmer.

The approach is very practical, using timing tests rather than Big O nota-

tion to analyze the efficiency of an approach. Coverage includes array and

ArrayLists, linked lists, hash tables, dictionaries, trees, graphs, and sorting

and searching algorithms, as well as more advanced algorithms such as prob-

abilistic algorithms and dynamic programming. This is the perfect resource

for C# professionals and students alike.

Michael McMillan is Instructor of Computer Information Systems at Pulaski

Technical College, as well as an adjunct instructor at the University of

Arkansas at Little Rock and the University of Central Arkansas. Mike’s previ-

ous books include Object-Oriented Programming with Visual Basic.NET, Data

Structures and Algorithms Using Visual Basic.NET, and Perl from the Ground Up.

He is a co-author of Programming and Problem-Solving with Visual Basic.NET.

Mike has written more than twenty-five trade journal articles on programming

and has more than twenty years of experience programming for industry and

education.

DATA STRUCTURES AND

ALGORITHMS USING C#

MICHAEL MCMILLAN
Pulaski Technical College

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87691-9

ISBN-13 978-0-521-67015-9

© Michael McMillan 2007

2007

Information on this title: www.cambridge.org/9780521876919

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the permission of Cambridge University Press.

ISBN-10 0-521-87691-5

ISBN-10 0-521-67015-2

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

hardback

llausv

Contents

Preface page vii

Chapter 1

An Introduction to Collections, Generics, and the

Timing Class 1

Chapter 2

Arrays and ArrayLists 26

Chapter 3

Basic Sorting Algorithms 42

Chapter 4

Basic Searching Algorithms 55

Chapter 5

Stacks and Queues 68

Chapter 6

The BitArray Class 94

Chapter 7

Strings, the String Class, and the StringBuilder Class 119

Chapter 8

Pattern Matching and Text Processing 147

v

vi CONTENTS

Chapter 9

Building Dictionaries: The DictionaryBase Class and the

SortedList Class 165

Chapter 10

Hashing and the Hashtable Class 176

Chapter 11

Linked Lists 194

Chapter 12

Binary Trees and Binary Search Trees 218

Chapter 13

Sets 237

Chapter 14

Advanced Sorting Algorithms 249

Chapter 15

Advanced Data Structures and Algorithms for Searching 263

Chapter 16

Graphs and Graph Algorithms 283

Chapter 17

Advanced Algorithms 314

References 339

Index 341

Preface

The study of data structures and algorithms is critical to the development

of the professional programmer. There are many, many books written on

data structures and algorithms, but these books are usually written as college

textbooks and are written using the programming languages typically taught

in college—Java or C++. C# is becoming a very popular language and this

book provides the C# programmer with the opportunity to study fundamental

data structures and algorithms.

C# exists in a very rich development environment called the .NET Frame-

work. Included in the .NET Framework library is a set of data structure classes

(also called collection classes), which range from the Array, ArrayList, and

Collection classes to the Stack and Queue classes and to the HashTable and

the SortedList classes. The data structures and algorithms student can now see

how to use a data structure before learning how to implement it. Previously,

an instructor had to discuss the concept of, say, a stack, abstractly until the

complete data structure was constructed. Instructors can now show students

how to use a stack to perform some computation, such as number base con-

versions, demonstrating the utility of the data structure immediately. With

this background, the student can then go back and learn the fundamentals of

the data structure (or algorithm) and even build their own implementation.

This book is written primarily as a practical overview of the data struc-

tures and algorithms all serious computer programmers need to know and

understand. Given this, there is no formal analysis of the data structures and

algorithms covered in the book. Hence, there is not a single mathematical

formula and not one mention of Big Oh analysis (if you don’t know what this

means, look at any of the books mentioned in the bibliography). Instead, the

various data structures and algorithms are presented as problem-solving tools.

vii

viii PREFACE

Simple timing tests are used to compare the performance of the data structures

and algorithms discussed in the book.

PREREQUISITES

The only prerequisite for this book is that the reader have some familiarity

with the C# language in general, and object-oriented programming in C# in

particular.

CHAPTER-BY-CHAPTER ORGANIZATION

Chapter 1 introduces the reader to the concept of the data structure as a

collection of data. The concepts of linear and nonlinear collections are intro-

duced. The Collection class is demonstrated. This chapter also introduces the

concept of generic programming, which allows the programmer to write one

class, or one method, and have it work for a multitude of data types. Generic

programming is an important new addition to C# (available in C# 2.0 and

beyond), so much so that there is a special library of generic data structures

found in the System.Collections.Generic namespace. When a data structure

has a generic implementation found in this library, its use is discussed. The

chapter ends with an introduction to methods of measuring the performance

of the data structures and algorithms discussed in the book.

Chapter 2 provides a review of how arrays are constructed, along with

demonstrating the features of the Array class. The Array class encapsulates

many of the functions associated with arrays (UBound, LBound, and so on)

into a single package. ArrayLists are special types of arrays that provide

dynamic resizing capabilities.

Chapter 3 is an introduction to the basic sorting algorithms, such as the

bubble sort and the insertion sort, and Chapter 4 examines the most funda-

mental algorithms for searching memory, the sequential and binary searches.

Two classic data structures are examined in Chapter 5: the stack and the

queue. The emphasis in this chapter is on the practical use of these data

structures in solving everyday problems in data processing. Chapter 6 covers

the BitArray class, which can be used to efficiently represent a large number

of integer values, such as test scores.

Strings are not usually covered in a data structures book, but Chapter 7

covers strings, the String class, and the StringBuilder class. Because so much

PREFACE ix

data processing in C# is performed on strings, the reader should be exposed

to the special techniques found in the two classes. Chapter 8 examines the

use of regular expressions for text processing and pattern matching. Regular

expressions often provide more power and efficiency than can be had with

more traditional string functions and methods.

Chapter 9 introduces the reader to the use of dictionaries as data structures.

Dictionaries, and the different data structures based on them, store data as

key/value pairs. This chapter shows the reader how to create his or her own

classes based on the DictionaryBase class, which is an abstract class. Chap-

ter 10 covers hash tables and the HashTable class, which is a special type of

dictionary that uses a hashing algorithm for storing data internally.

Another classic data structure, the linked list, is covered in Chapter 11.

Linked lists are not as important a data structure in C# as they are in a

pointer-based language such as C++, but they still have a role in C# program-

ming. Chapter 12 introduces the reader to yet another classic data structure—

the binary tree. A specialized type of binary tree, the binary search tree, is

the primary topic of the chapter. Other types of binary trees are covered in

Chapter 15.

Chapter 13 shows the reader how to store data in sets, which can be useful in

situations in which only unique data values can be stored in the data structure.

Chapter 14 covers more advanced sorting algorithms, including the popular

and efficient QuickSort, which is the basis for most of the sorting procedures

implemented in the .NET Framework library. Chapter 15 looks at three data

structures that prove useful for searching when a binary search tree is not

called for: the AVL tree, the red-black tree, and the skip list.

Chapter 16 discusses graphs and graph algorithms. Graphs are useful for

representing many different types of data, especially networks. Finally, Chap-

ter 17 introduces the reader to what algorithm design techniques really are:

dynamic algorithms and greedy algorithms.

ACKNOWLEDGEMENTS

There are several different groups of people who must be thanked for helping

me finish this book. First, thanks to a certain group of students who first

sat through my lectures on developing data structures and algorithms. These

students include (not in any particular order): Matt Hoffman, Ken Chen, Ken

Cates, Jeff Richmond, and Gordon Caffey. Also, one of my fellow instructors

at Pulaski Technical College, Clayton Ruff, sat through many of the lectures

x PREFACE

and provided excellent comments and criticism. I also have to thank my

department dean, David Durr, and my department chair, Bernica Tackett, for

supporting my writing endeavors. I also need to thank my family for putting

up with me while I was preoccupied with research and writing. Finally, many

thanks to my editors at Cambridge, Lauren Cowles and Heather Bergman, for

putting up with my many questions, topic changes, and habitual lateness.

CHAPTER 1

An Introduction to
Collections, Generics,
and the Timing Class

This book discusses the development and implementation of data structures

and algorithms using C#. The data structures we use in this book are found

in the .NET Framework class library System.Collections. In this chapter, we

develop the concept of a collection by first discussing the implementation of

our own Collection class (using the array as the basis of our implementation)

and then by covering the Collection classes in the .NET Framework.

An important addition to C# 2.0 is generics. Generics allow the C# pro-

grammer to write one version of a function, either independently or within a

class, without having to overload the function many times to allow for differ-

ent data types. C# 2.0 provides a special library, System.Collections.Generic,

that implements generics for several of the System.Collections data structures.

This chapter will introduce the reader to generic programming.

Finally, this chapter introduces a custom-built class, the Timing class, which

we will use in several chapters to measure the performance of a data structure

and/or algorithm. This class will take the place of Big O analysis, not because

Big O analysis isn’t important, but because this book takes a more practical

approach to the study of data structures and algorithms.

1

2 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

COLLECTIONS DEFINED

A collection is a structured data type that stores data and provides operations

for adding data to the collection, removing data from the collection, updating

data in the collection, as well as operations for setting and returning the values

of different attributes of the collection.

Collections can be broken down into two types: linear and nonlinear. A

linear collection is a list of elements where one element follows the previous

element. Elements in a linear collection are normally ordered by position

(first, second, third, etc.). In the real world, a grocery list is a good example

of a linear collection; in the computer world (which is also real), an array is

designed as a linear collection.

Nonlinear collections hold elements that do not have positional order

within the collection. An organizational chart is an example of a nonlinear

collection, as is a rack of billiard balls. In the computer world, trees, heaps,

graphs, and sets are nonlinear collections.

Collections, be they linear or nonlinear, have a defined set of properties that

describe them and operations that can be performed on them. An example

of a collection property is the collections Count, which holds the number of

items in the collection. Collection operations, called methods, include Add

(for adding a new element to a collection), Insert (for adding a new element

to a collection at a specified index), Remove (for removing a specified element

from a collection), Clear (for removing all the elements from a collection),

Contains (for determining if a specified element is a member of a collec-

tion), and IndexOf (for determining the index of a specified element in a

collection).

COLLECTIONS DESCRIBED

Within the two major categories of collections are several subcategories.

Linear collections can be either direct access collections or sequential access

collections, whereas nonlinear collections can be either hierarchical or

grouped. This section describes each of these collection types.

Direct Access Collections

The most common example of a direct access collection is the array. We define

an array as a collection of elements with the same data type that are directly

accessed via an integer index, as illustrated in Figure 1.1.

Collections Described 3

Item ø Item 1 Item 2 Item 3 . . . Item j Item n−1

FIGURE 1.1. Array.

Arrays can be static so that the number of elements specified when the array

is declared is fixed for the length of the program, or they can be dynamic, where

the number of elements can be increased via the ReDim or ReDim Preserve

statements.

In C#, arrays are not only a built-in data type, they are also a class. Later

in this chapter, when we examine the use of arrays in more detail, we will

discuss how arrays are used as class objects.

We can use an array to store a linear collection. Adding new elements to an

array is easy since we simply place the new element in the first free position

at the rear of the array. Inserting an element into an array is not as easy (or

efficient), since we will have to move elements of the array down in order

to make room for the inserted element. Deleting an element from the end of

an array is also efficient, since we can simply remove the value from the last

element. Deleting an element in any other position is less efficient because,

just as with inserting, we will probably have to adjust many array elements

up one position to keep the elements in the array contiguous. We will discuss

these issues later in the chapter. The .NET Framework provides a specialized

array class, ArrayList, for making linear collection programming easier. We

will examine this class in Chapter 3.

Another type of direct access collection is the string. A string is a collection

of characters that can be accessed based on their index, in the same manner we

access the elements of an array. Strings are also implemented as class objects

in C#. The class includes a large set of methods for performing standard

operations on strings, such as concatenation, returning substrings, inserting

characters, removing characters, and so forth. We examine the String class in

Chapter 8.

C# strings are immutable, meaning once a string is initialized it cannot be

changed. When you modify a string, a copy of the string is created instead of

changing the original string. This behavior can lead to performance degrada-

tion in some cases, so the .NET Framework provides a StringBuilder class that

enables you to work with mutable strings. We’ll examine the StringBuilder in

Chapter 8 as well.

The final direct access collection type is the struct (also called structures

and records in other languages). A struct is a composite data type that holds

data that may consist of many different data types. For example, an employee

4 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

record consists of employee’ name (a string), salary (an integer), identification

number (a string, or an integer), as well as other attributes. Since storing each

of these data values in separate variables could become confusing very easily,

the language provides the struct for storing data of this type.

A powerful addition to the C# struct is the ability to define methods for

performing operations stored on the data in a struct. This makes a struct

somewhat like a class, though you can’t inherit or derive a new type from

a structure. The following code demonstrates a simple use of a structure

in C#:

using System;

public struct Name {

private string fname, mname, lname;

public Name(string first, string middle, string last) {

fname = first;

mname = middle;

lname = last;

}

public string firstName {

get {

return fname;

}

set {

fname = firstName;

}

}

public string middleName {

get {

return mname;

}

set {

mname = middleName;

}

}

public string lastName {

get {

Collections Described 5

return lname;

}

set {

lname = lastName;

}

}

public override string ToString() {

return (String.Format("{0} {1} {2}", fname, mname,

lname));

}

public string Initials() {

return(String.Format("{0}{1}{2}",fname.Substring(0,1),

mname.Substring(0,1), lname.Substring(0,1)));

}

}

public class NameTest {

static void Main() {

Name myName = new Name("Michael", "Mason", "McMillan");

string fullName, inits;

fullName = myName.ToString();

inits = myName.Initials();

Console.WriteLine("My name is {0}.", fullName);

Console.WriteLine("My initials are {0}.", inits);

}

}

Although many of the elements in the .NET environment are implemented as

classes (such as arrays and strings), several primary elements of the language

are implemented as structures, such as the numeric data types. The Integer

data type, for example, is implemented as the Int32 structure. One of the

methods you can use with Int32 is the Parse method for converting the string

representation of a number into an integer. Here’s an example:

using System;

public class IntStruct {

static void Main() {

6 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

int num;

string snum;

Console.Write("Enter a number: ");

snum = Console.ReadLine();

num = Int32.Parse(snum);

Console.WriteLine(num);

}

}

Sequential Access Collections

A sequential access collection is a list that stores its elements in sequential

order. We call this type of collection a linear list. Linear lists are not limited

by size when they are created, meaning they are able to expand and contract

dynamically. Items in a linear list are not accessed directly; they are referenced

by their position, as shown in Figure 1.2. The first element of a linear list is

at the front of the list and the last element is at the rear of the list.

Because there is no direct access to the elements of a linear list, to access an

element you have to traverse through the list until you arrive at the position

of the element you are looking for. Linear list implementations usually allow

two methods for traversing a list—in one direction from front to rear, and

from both front to rear and rear to front.

A simple example of a linear list is a grocery list. The list is created by

writing down one item after another until the list is complete. The items are

removed from the list while shopping as each item is found.

Linear lists can be either ordered or unordered. An ordered list has values

in order in respect to each other, as in:

Beata Bernica David Frank Jennifer Mike Raymond Terrill

An unordered list consists of elements in any order. The order of a list makes

a big difference when performing searches on the data on the list, as you’ll see

in Chapter 2 when we explore the binary search algorithm versus a simple

linear search.

1st 2nd 3rd 4th nth. . .

Front Rear

FIGURE 1.2. Linear List.

Collections Described 7

Push

David

Raymond

Mike

Bernica Pop

David

Raymond

Mike

Bernica

FIGURE 1.3. Stack Operations.

Some types of linear lists restrict access to their data elements. Examples

of these types of lists are stacks and queues. A stack is a list where access is

restricted to the beginning (or top) of the list. Items are placed on the list

at the top and can only be removed from the top. For this reason, stacks are

known as Last-in, First-out structures. When we add an item to a stack, we

call the operation a push. When we remove an item from a stack, we call that

operation a pop. These two stack operations are shown in Figure 1.3.

The stack is a very common data structure, especially in computer systems

programming. Stacks are used for arithmetic expression evaluation and for

balancing symbols, among its many applications.

A queue is a list where items are added at the rear of the list and removed

from the front of the list. This type of list is known as a First-in, First-out struc-

ture. Adding an item to a queue is called an EnQueue, and removing an item

from a queue is called a Dequeue. Queue operations are shown in Figure 1.4.

Queues are used in both systems programming, for scheduling operating

system tasks, and for simulation studies. Queues make excellent structures

for simulating waiting lines in every conceivable retail situation. A special

type of queue, called a priority queue, allows the item in a queue with the

highest priority to be removed from the queue first. Priority queues can be

used to study the operations of a hospital emergency room, where patients

with heart trouble need to be attended to before a patient with a broken arm,

for example.

The last category of linear collections we’ll examine are called generalized

indexed collections. The first of these, called a hash table, stores a set of data

Mike

Raymond

David

Beata

Bernica

Beata

Mike

Raymond

David

Bernica

En Queue

De Queue

FIGURE 1.4. Queue Operations.

8 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

“Paul E. Spencer”

“Information Systems”

37500

5

FIGURE 1.5. A Record To Be Hashed.

values associated with a key. In a hash table, a special function, called a hash

function, takes one data value and transforms the value (called the key) into

an integer index that is used to retrieve the data. The index is then used to

access the data record associated with the key. For example, an employee

record may consist of a person’s name, his or her salary, the number of years

the employee has been with the company, and the department he or she works

in. This structure is shown in Figure 1.5. The key to this data record is the

employee’s name. C# has a class, called HashTable, for storing data in a hash

table. We explore this structure in Chapter 10.

Another generalized indexed collection is the dictionary. A dictionary is

made up of a series of key–value pairs, called associations. This structure

is analogous to a word dictionary, where a word is the key and the word’s

definition is the value associated with the key. The key is an index into the

value associated with the key. Dictionaries are often called associative arrays

because of this indexing scheme, though the index does not have to be an

integer. We will examine several Dictionary classes that are part of the .NET

Framework in Chapter 11.

Hierarchical Collections

Nonlinear collections are broken down into two major groups: hierarchical

collections and group collections. A hierarchical collection is a group of items

divided into levels. An item at one level can have successor items located at

the next lower level.

One common hierarchical collection is the tree. A tree collection looks like

an upside-down tree, with one data element as the root and the other data

values hanging below the root as leaves. The elements of a tree are called

nodes, and the elements that are below a particular node are called the node’s

children. A sample tree is shown in Figure 1.6.

Collections Described 9

Root

FIGURE 1.6. A Tree Collection.

Trees have applications in several different areas. The file systems of most

modern operating systems are designed as a tree collection, with one directory

as the root and other subdirectories as children of the root.

A binary tree is a special type of tree collection where each node has no

more than two children. A binary tree can become a binary search tree, making

searches for large amounts of data much more efficient. This is accomplished

by placing nodes in such a way that the path from the root to a node where

the data is stored is along the shortest path possible.

Yet another tree type, the heap, is organized so that the smallest data value

is always placed in the root node. The root node is removed during a deletion,

and insertions into and deletions from a heap always cause the heap to reor-

ganize so that the smallest value is placed in the root. Heaps are often used

for sorts, called a heap sort. Data elements stored in a heap can be kept sorted

by repeatedly deleting the root node and reorganizing the heap.

Several different varieties of trees are discussed in Chapter 12.

Group Collections

A nonlinear collection of items that are unordered is called a group. The three

major categories of group collections are sets, graphs, and networks.

A set is a collection of unordered data values where each value is unique.

The list of students in a class is an example of a set, as is, of course, the integers.

Operations that can be performed on sets include union and intersection. An

example of set operations is shown in Figure 1.7.

10 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

2 4

B

6

8 10 12

11 3

A A intersection B A union B

2

1 5 7 2 4 6

8 10 12

1 2 3

5 7 11

1 63
5 7 2

11

4
8 10

12

FIGURE 1.7. Set Collection Operations.

A graph is a set of nodes and a set of edges that connect the nodes. Graphs

are used to model situations where each of the nodes in a graph must be visited,

sometimes in a particular order, and the goal is to find the most efficient way

to “traverse” the graph. Graphs are used in logistics and job scheduling and

are well studied by computer scientists and mathematicians. You may have

heard of the “Traveling Salesman” problem. This is a particular type of graph

problem that involves determining which cities on a salesman’s route should

be traveled in order to most efficiently complete the route within the budget

allowed for travel. A sample graph of this problem is shown in Figure 1.8.

This problem is part of a family of problems known as NP-complete prob-

lems. This means that for large problems of this type, an exact solution is not

known. For example, to find the solution to the problem in Figure 1.8, 10

factorial tours, which equals 3,628,800 tours. If we expand the problem to

100 cities, we have to examine 100 factorial tours, which we currently cannot

do with current methods. An approximate solution must be found instead.

A network is a special type of graph where each of the edges is assigned a

weight. The weight is associated with a cost for using that edge to move from

one node to another. Figure 1.9 depicts a network of cities where the weights

are the miles between the cities (nodes).

We’ve now finished our tour of the different types of collections we are going

to discuss in this book. Now we’re ready to actually look at how collections

Rome
Washington

Moscow

LA

Tokyo

Seattle

Boston

New York

London

Paris

FIGURE 1.8. The Traveling Salesman Problem.

The CollectionBase Class 11

A

D

142

B

C

91

20
2

72

186

FIGURE 1.9. A Network Collection.

are implemented in C#. We start by looking at how to build a Collection class

using an abstract class from the .NET Framework, the CollectionBase class.

THE COLLECTIONBASE CLASS

The .NET Framework library does not include a generic Collection class

for storing data, but there is an abstract class you can use to build your

own Collection class—CollectionBase. The CollectionBase class provides the

programmer with the ability to implement a custom Collection class. The

class implicitly implements two interfaces necessary for building a Collection

class, ICollection and IEnumerable, leaving the programmer with having to

implement just those methods that are typically part of a Collection class.

A Collection Class Implementation Using ArrayLists

In this section, we’ll demonstrate how to use C# to implement our own Col-

lection class. This will serve several purposes. First, if you’re not quite up

to speed on object-oriented programming (OOP), this implementation will

show you some simple OOP techniques in C#. We can also use this section to

discuss some performance issues that are going to come up as we discuss the

different C# data structures. Finally, we think you’ll enjoy this section, as well

as the other implementation sections in this book, because it’s really a lot of

fun to reimplement the existing data structures using just the native elements

of the language. As Don Knuth (one of the pioneers of computer science)

says, to paraphrase, you haven’t really learned something well until you’ve

taught it to a computer. So, by teaching C# how to implement the different

data structures, we’ll learn much more about those structures than if we just

choose to use the classes from the library in our day-to-day programming.

12 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

Defining a Collection Class

The easiest way to define a Collection class in C# is to base the class on an

abstract class already found in the System.Collections library—the Collection-

Base class. This class provides a set of abstract methods you can implement

to build your own collection. The CollectionBase class provides an underly-

ing data structure, InnerList (an ArrayList), which you can use as a base for

your class. In this section, we look at how to use CollectionBase to build a

Collection class.

Implementing the Collection Class

The methods that will make up the Collection class all involve some type of

interaction with the underlying data structure of the class—InnerList. The

methods we will implement in this first section are the Add, Remove, Count,

and Clear methods. These methods are absolutely essential to the class, though

other methods definitely make the class more useful.

Let’s start with the Add method. This method has one parameter – an

Object variable that holds the item to be added to the collection. Here is the

code:

public void Add(Object item) {

InnerList.Add(item);

}

ArrayLists store data as objects (the Object data type), which is why we

have declared item as Object. You will learn much more about ArrayLists

in Chapter 2.

The Remove method works similarly:

public void Remove(Object item) {

InnerList.Remove(item);

}

The next method is Count. Count is most often implemented as a prop-

erty, but we prefer to make it a method. Also, Count is implemented in the

The CollectionBase Class 13

underlying class, CollectionBase, so we have to use the new keyword to hide

the definition of Count found in CollectionBase:

public new int Count() {

return InnerList.Count;

}

The Clear method removes all the items from InnerList. We also have to use

the new keyword in the definition of the method:

public new void Clear() {

InnerList.Clear();

}

This is enough to get us started. Let’s look at a program that uses the

Collection class, along with the complete class definition:

using System;

using System.Collections;

public class Collection : CollectionBase<T> {

public void Add(Object item) {

InnerList.Add(item);

}

public void Remove(Object item) {

InnerList.Remove(item);

}

public new void Clear() {

InnerList.Clear();

}

public new int Count() {

return InnerList.Count;

}

}

class chapter1 {

14 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

static void Main() {

Collection names = new Collection();

names.Add("David");

names.Add("Bernica");

names.Add("Raymond");

names.Add("Clayton");

foreach (Object name in names)

Console.WriteLine(name);

Console.WriteLine("Number of names: " + names.

Count());

names.Remove("Raymond");

Console.WriteLine("Number of names: " + names.

Count());

names.Clear();

Console.WriteLine("Number of names: " + names.

Count());

}

}

There are several other methods you can implement in order to create a

more useful Collection class. You will get a chance to implement some of

these methods in the exercises.

Generic Programming

One of the problems with OOP is a feature called “code bloat.” One type of

code bloat occurs when you have to override a method, or a set of methods,

to take into account all of the possible data types of the method’s parameters.

One solution to code bloat is the ability of one value to take on multiple data

types, while only providing one definition of that value. This technique is

called generic programming.

A generic program provides a data type “placeholder” that is filled in by a

specific data type at compile-time. This placeholder is represented by a pair

of angle brackets (< >), with an identifier placed between the brackets. Let’s

look at an example.

A canonical first example for generic programming is the Swap function.

Here is the definition of a generic Swap function in C#:

The CollectionBase Class 15

static void Swap<T>(ref T val1, ref T val2) {

T temp;

temp = val1;

val1 = val2;

val2 = temp;

}

The placeholder for the data type is placed immediately after the function

name. The identifier placed inside the angle brackets is now used whenever a

generic data type is needed. Each of the parameters is assigned a generic data

type, as is the temp variable used to make the swap. Here’s a program that

tests this code:

using System;

class chapter1 {

static void Main() {

int num1 = 100;

int num2 = 200;

Console.WriteLine("num1: " + num1);

Console.WriteLine("num2: " + num2);

Swap<int>(ref num1, ref num2);

Console.WriteLine("num1: " + num1);

Console.WriteLine("num2: " + num2);

string str1 = "Sam";

string str2 = "Tom";

Console.WriteLine("String 1: " + str1);

Console.WriteLine("String 2: " + str2);

Swap<string>(ref str1, ref str2);

Console.WriteLine("String 1: " + str1);

Console.WriteLine("String 2: " + str2);

}

static void Swap<T>(ref T val1, ref T val2) {

T temp;

temp = val1;

val1 = val2;

val2 = temp;

}

}

16 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

The output from this program is:

Generics are not limited to function definitions; you can also create generic

classes. A generic class definition will contain a generic type placeholder after

the class name. Anytime the class name is referenced in the definition, the type

placeholder must be provided. The following class definition demonstrates

how to create a generic class:

public class Node<T> {

T data;

Node<T> link;

public Node(T data, Node<T> link) {

this.data = data;

this.link = link;

}

}

This class can be used as follows:

Node<string> node1 = new Node<string>("Mike", null);

Node<string> node2 = new Node<string>("Raymond", node1);

We will be using the Node class in several of the data structures we examine

in this book.

While this use of generic programming can be quite useful, C# provides a

library of generic data structures already ready to use. These data structures

are found in the System.Collection.Generics namespace and when we discuss

a data structure that is part of this namespace, we will examine its use. Gener-

ally, though, these classes have the same functionality as the nongeneric data

The CollectionBase Class 17

structure classes, so we will usually limit the discussion of the generic class

to how to instantiate an object of that class, since the other methods and their

use are no different.

Timing Tests

Because this book takes a practical approach to the analysis of the data struc-

tures and algorithms examined, we eschew the use of Big O analysis, preferring

instead to run simple benchmark tests that will tell us how long in seconds

(or whatever time unit) it takes for a code segment to run.

Our benchmarks will be timing tests that measure the amount of time it

takes an algorithm to run to completion. Benchmarking is as much of an art

as a science and you have to be careful how you time a code segment in order

to get an accurate analysis. Let’s examine this in more detail.

An Oversimplified Timing Test

First, we need some code to time. For simplicity’s sake, we will time a sub-

routine that writes the contents of an array to the console. Here’s the code:

static void DisplayNums(int[] arr) {

for(int i = 0; i <= arr.GetUpperBound(0); i++)

Console.Write(arr[i] + " ");

}

The array is initialized in another part of the program, which we’ll examine

later.

To time this subroutine, we need to create a variable that is assigned the

system time just as the subroutine is called, and we need a variable to store

the time when the subroutine returns. Here’s how we wrote this code:

DateTime startTime;

TimeSpan endTime;

startTime = DateTime.Now;

endTime = DateTime.Now.Subtract(startTime);

18 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

Running this code on my laptop (running at 1.4 mHz on Windows XP

Professional), the subroutine ran in about 5 seconds (4.9917). Although this

code segment seems reasonable for performing a timing test, it is completely

inadequate for timing code running in the .NET environment. Why?

First, the code measures the elapsed time from when the subroutine was

called until the subroutine returns to the main program. The time used by

other processes running at the same time as the C# program adds to the time

being measured by the test.

Second, the timing code doesn’t take into account garbage collection per-

formed in the .NET environment. In a runtime environment such as .NET,

the system can pause at any time to perform garbage collection. The sample

timing code does nothing to acknowledge garbage collection and the result-

ing time can be affected quite easily by garbage collection. So what do we do

about this?

Timing Tests for the .NET Environment

In the .NET environment, we need to take into account the thread our program

is running in and the fact that garbage collection can occur at any time. We

need to design our timing code to take these facts into consideration.

Let’s start by looking at how to handle garbage collection. First, let’s discuss

what garbage collection is used for. In C#, reference types (such as strings,

arrays, and class instance objects) are allocated memory on something called

the heap. The heap is an area of memory reserved for data items (the types

mentioned previously). Value types, such as normal variables, are stored on

the stack. References to reference data are also stored on the stack, but the

actual data stored in a reference type is stored on the heap.

Variables that are stored on the stack are freed when the subprogram in

which the variables are declared completes its execution. Variables stored on

the heap, on the other hand, are held on the heap until the garbage collection

process is called. Heap data is only removed via garbage collection when there

is not an active reference to that data.

Garbage collection can, and will, occur at arbitrary times during the exe-

cution of a program. However, we want to be as sure as we can that the

garbage collector is not run while the code we are timing is executing. We can

head off arbitrary garbage collection by calling the garbage collector explic-

itly. The .NET environment provides a special object for making garbage

The CollectionBase Class 19

collection calls, GC. To tell the system to perform garbage collection, we

simply write:

GC.Collect();

That’s not all we have to do, though. Every object stored on the heap has

a special method called a finalizer. The finalizer method is executed as the

last step before deleting the object. The problem with finalizer methods is

that they are not run in a systematic way. In fact, you can’t even be sure an

object’s finalizer method will run at all, but we know that before we can be

sure an object is deleted, it’s finalizer method must execute. To ensure this,

we add a line of code that tells the program to wait until all the finalizer

methods of the objects on the heap have run before continuing. The line of

code is:

GC.WaitForPendingFinalizers();

We have one hurdle cleared and just one left to go – using the proper

thread. In the .NET environment, a program is run inside a process, also

called an application domain. This allows the operating system to separate

each different program running on it at the same time. Within a process, a

program or a part of a program is run inside a thread. Execution time for a

program is allocated by the operating system via threads. When we are timing

the code for a program, we want to make sure that we’re timing just the

code inside the process allocated for our program and not other tasks being

performed by the operating system.

We can do this by using the Process class in the .NET Framework. The

Process class has methods for allowing us to pick the current process (the

process our program is running in), the thread the program is running in, and

a timer to store the time the thread starts executing. Each of these methods

can be combined into one call, which assigns its return value to a variable to

store the starting time (a TimeSpan object). Here’s the line of code (okay, two

lines of code):

TimeSpan startingTime;

startingTime = Process.GetCurrentProcess.Threads(0).

UserProcessorTime;

20 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

All we have left to do is capture the time when the code segment we’re

timing stops. Here’s how it’s done:

duration =

Process.GetCurrentProcess.Threads(0).UserProcessorTime.

Subtract(startingTime);

Now let’s combine all this into one program that times the same code we

tested earlier:

using System;

using System.Diagnostics;

class chapter1 {

static void Main() {

int[] nums = new int[100000];

BuildArray(nums);

TimeSpan startTime;

TimeSpan duration;

startTime =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime;

DisplayNums(nums);

duration =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime.

Subtract(startTime);

Console.WriteLine("Time: " + duration.TotalSeconds);

}

static void BuildArray(int[] arr) {

for(int i = 0; i <= 99999; i++)

arr[i] = i;

}

static void DisplayNums(int[] arr) {

for(int i = 0; i <= arr.GetUpperBound(0); i++)

Console.Write(arr[i] + " ");

}

}

The CollectionBase Class 21

Using the new and improved timing code, the program returns 0.2526.

This compares with the approximately 5 seconds returned using the first

timing code. Clearly, there is a major discrepancy between these two timing

techniques and you should use the .NET techniques when timing code in the

.NET environment.

A Timing Test Class

Although we don’t need a class to run our timing code, it makes sense to

rewrite the code as a class, primarily because we’ll keep our code clear if we

can reduce the number of lines in the code we test.

A Timing class needs the following data members:

� startingTime—to store the starting time of the code we are testing
� duration—the ending time of the code we are testing

The starting time and the duration members store times and we chose to use

the TimeSpan data type for these data members. We’ll use just one constructor

method, a default constructor that sets both the data members to 0.

We’ll need methods for telling a Timing object when to start timing code

and when to stop timing. We also need a method for returning the data stored

in the duration data member.

As you can see, the Timing class is quite small, needing just a few methods.

Here’s the definition:

public class Timing {

TimeSpan startingTime;

TimeSpan duration;

public Timing() {

startingTime = new TimeSpan(0);

duration = new TimeSpan(0);

}

public void StopTime() {

duration =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime.Subtract(startingTime);

22 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

}

public void startTime() {

GC.Collect();

GC.WaitForPendingFinalizers();

startingTime =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime;

}

public TimeSpan Result() {

return duration;

}

}

Here’s the program to test the DisplayNums subroutine, rewritten with the

Timing class:

using System;

using System.Diagnostics;

public class Timing {

TimeSpan startingTime;

TimeSpan duration;

public Timing() {

startingTime = new TimeSpan(0);

duration = new TimeSpan(0);

}

public void StopTime() {

duration =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime.

Subtract(startingTime);

}

public void startTime() {

GC.Collect();

GC.WaitForPendingFinalizers();

startingTime =

The CollectionBase Class 23

Process.GetCurrentProcess().Threads[0].

UserProcessorTime;

}

public TimeSpan Result() {

return duration;

}

}

class chapter1 {

static void Main() {

int[] nums = new int[100000];

BuildArray(nums);

Timing tObj = new Timing();

tObj.startTime();

DisplayNums(nums);

tObj.stopTime();

Console.WriteLine("time (.NET): " & tObj.Result.

TotalSeconds);

}

static void BuildArray(int[] arr) {

for(int i = 0; i < 100000; i++)

arr[i] = I;

}

}

By moving the timing code into a class, we’ve cut down the number of lines

in the main program from 13 to 8. Admittedly, that’s not a lot of code to cut

out of a program, but more important than the number of lines we cut is the

clutter in the main program. Without the class, assigning the starting time to

a variable looks like this:

startTime = Process.GetCurrentProcess().Threads[0)].

UserProcessorTime;

With the Timing class, assigning the starting time to the class data member

looks like this:

tObj.startTime();

24 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

Encapsulating the long assignment statement into a class method makes our

code easier to read and less likely to have bugs.

SUMMARY

This chapter reviews three important techniques we will use often in this book.

Many, though not all of the programs we will write, as well as the libraries we

will discuss, are written in an object-oriented manner. The Collection class

we developed illustrates many of the basic OOP concepts seen throughout

these chapters. Generic programming allows the programmer to simplify the

definition of several data structures by limiting the number of methods that

have to be written or overloaded. The Timing class provides a simple, yet

effective way to measure the performance of the data structures and algorithms

we will study.

EXERCISES

1. Create a class called Test that has data members for a student’s name and

a number indicating the test number. This class is used in the following

scenario: When a student turns in a test, they place it face down on the

desk. If a student wants to check an answer, the teacher has to turn the stack

over so the first test is face up, work through the stack until the student’s

test is found, and then remove the test from the stack. When the student

finishes checking the test, it is reinserted at the end of the stack.

Write a Windows application to model this situation. Include text boxes

for the user to enter a name and a test number. Put a list box on the form

for displaying the final list of tests. Provide four buttons for the following

actions: 1. Turn in a test; 2. Let student look at test; 3. Return a test; and 4.

Exit. Perform the following actions to test your application: 1. Enter a name

and a test number. Insert the test into a collection named submittedTests; 2.

Enter a name, delete the associated test from submittedTests, and insert the

test in a collection named outForChecking; 3. Enter a name, delete the test

from outForChecking, and insert it in submittedTests; 4. Press the Exit

button. The Exit button doesn’t stop the application but instead deletes all

tests from outForChecking and inserts them in submittedTests and displays

a list of all the submitted tests.

Use the Collection class developed in this chapter.

Exercises 25

2. Add to the Collection class by implementing the following methods:

a. Insert

b. Contains

c. IndexOf

d. RemoveAt

3. Use the Timing class to compare the performance of the Collection class

and an ArrayList when adding 1,000,000 integers to each.

4. Build your own Collection class without deriving your class from

CollectionBase. Use generics in your implementation.

CHAPTER 2

Arrays and ArrayLists

The array is the most common data structure, present in nearly all program-

ming languages. Using an array in C# involves creating an array object of

System.Array type, the abstract base type for all arrays. The Array class pro-

vides a set of methods for performing tasks such as sorting and searching that

programmers had to build by hand in the past.

An interesting alternative to using arrays in C# is the ArrayList class. An

arraylist is an array that grows dynamically as more space is needed. For

situations where you can’t accurately determine the ultimate size of an array,

or where the size of the array will change quite a bit over the lifetime of a

program, an arraylist may be a better choice than an array.

In this chapter, we’ll quickly touch on the basics of using arrays in C#,

then move on to more advanced topics, including copying, cloning, test-

ing for equality and using the static methods of the Array and ArrayList

classes.

ARRAY BASICS

Arrays are indexed collections of data. The data can be of either a built-in

type or a user-defined type. In fact, it is probably the simplest just to say that

array data are objects. Arrays in C# are actually objects themselves because

they derive from the System.Array class. Since an array is a declared instance

26

Array Basics 27

of the System.Array class, you have the use of all the methods and properties

of this class when using arrays.

Declaring and Initializing Arrays

Arrays are declared using the following syntax:

type[] array-name;

where type is the data type of the array elements. Here is an example:

string[] names;

A second line is necessary to instantiate the array (since it is an object of

System.Array type) and to determine the size of the array. The following line

instantiates the names array just declared:

names = new string[10];

and reserves memory for five strings.

You can combine these two statements into one line when necessary to do

so:

string[] names = new string[10];

There are times when you will want to declare, instantiate, and assign data

to an array in one statement. You can do this in C# using an initialization

list:

int[] numbers = new int[] {1,2,3,4,5};

The list of numbers, called the initialization list, is delimited with curly braces,

and each element is delimited with a comma. When you declare an array

using this technique, you don’t have to specify the number of elements. The

compiler infers this data from the number of items in the initialization

list.

28 ARRAYS AND ARRAYLISTS

Setting and Accessing Array Elements

Elements are stored in an array either by direct access or by calling the Array

class method SetValue. Direct access involves referencing an array position by

index on the left-hand side of an assignment statement:

Names[2] = "Raymond";

Sales[19] = 23123;

The SetValue method provides a more object-oriented way to set the value

of an array element. The method takes two arguments, an index number and

the value of the element.

names.SetValue[2, "Raymond"];

sales.SetValue[19, 23123];

Array elements are accessed either by direct access or by calling the

GetValue method. The GetValue method takes a single argument—an index.

myName = names[2];

monthSales = sales.GetValue[19];

It is common to loop through an array in order to access every array element

using a For loop. A frequent mistake programmers make when coding the loop

is to either hard-code the upper value of the loop (which is a mistake because

the upper bound may change if the array is dynamic) or call a function that

accesses the upper bound of the loop for each iteration of the loop:

(for int i = 0; i <= sales.GetUpperBound(0); i++)

totalSales = totalSales + sales[i];

Methods and Properties for Retrieving Array Metadata

The Array class provides several properties for retrieving metadata about an

array:

� Length: Returns the total number of elements in all dimensions of an array.
� GetLength: Returns the number of elements in specified dimension of an

array.

Array Basics 29

� Rank: Returns the number of dimensions of an array.
� GetType: Returns the Type of the current array instance.

The Length method is useful for counting the number of elements in a

multidimensional array, as well as returning the exact number of elements in

the array. Otherwise, you can use the GetUpperBound method and add one

to the value.

Since Length returns the total number of elements in an array, the

GetLength method counts the elements in one dimension of an array. This

method, along with the Rank property, can be used to resize an array at run-

time without running the risk of losing data. This technique is discussed later

in the chapter.

The GetType method is used for determining the data type of an array in

a situation where you may not be sure of the array’s type, such as when the

array is passed as an argument to a method. In the following code fragment,

we create a variable of type Type, which allows us to use call a class method,

IsArray, to determine if an object is an array. If the object is an array, then the

code returns the data type of the array.

int[] numbers;

numbers = new int[] {0,1,2,3,4};

Type arrayType = numbers.GetType();

if (arrayType.IsArray)

Console.WriteLine("The array type is: {0}", arrayType);

else

Console.WriteLine("Not an array");

Console.Read();

The GetType method returns not only the type of the array, but also lets us

know that the object is indeed an array. Here is the output from the code:

The array type is: System.Int32[]

The brackets indicate the object is an array. Also notice that we use a format

when displaying the data type. We have to do this because we can’t convert

the Type data to string in order to concatenate it with the rest of the displayed

string.

30 ARRAYS AND ARRAYLISTS

Multidimensional Arrays

So far we have limited our discussion to arrays that have just a single dimen-

sion. In C#, an array can have up to 32 dimensions, though arrays with more

than three dimensions are very rare (and very confusing).

Multidimensional arrays are declared by providing the upper bound of each

of the dimensions of the array. The two-dimensional declaration:

int[,] grades = new int[4,5];

declares an array that consists of 4 rows and 5 columns. Two-dimensional

arrays are often used to model matrices.

You can also declare a multidimensional array without specifing the dimen-

sion bounds. To do this, you use commas to specify the number of dimensions.

For example,

double[,] Sales;

declares a two-dimensional array, whereas

double[,,] sales;

declares a three-dimensional array. When you declare arrays without provid-

ing the upper bounds of the dimensions, you have to later redimension the

array with those bounds:

sales = new double[4,5];

Multidimensional arrays can be initialized with an initialization list. Look

at the following statement:

Int[,] grades = new int[,] {{1, 82, 74, 89, 100},

{2, 93, 96, 85, 86},

{3, 83, 72, 95, 89},

{4, 91, 98, 79, 88}}

First, notice that the upper bounds of the array are not specified. When you

initialize an array with an initialization list, you can’t specify the bounds of

Array Basics 31

the array. The compiler computes the upper bounds of each dimension from

the data in the initialization list. The initialization list itself is demarked with

curly braces, as is each row of the array. Each element in the row is delimited

with a comma.

Accessing the elements of a multidimensional array is similar to accessing

the elements of a one-dimensional array. You can use the traditional array

access technique,

grade = Grades[2,2];

Grades(2,2) = 99

or you can use the methods of the Array class:

grade = Grades.GetValue[0,2]

You can’t use the SetValue method with a multidimensional array because the

method only accepts two arguments: a value and a single index.

It is a common operation to perform calculations on all the elements of

a multidimensional array, though often based on either the values stored in

the rows of the array or the values stored in the columns of the array. Using

the Grades array, if each row of the array is a student record, we can calculate

the grade average for each student as follows:

int[,] grades = new int[,] {{1, 82, 74, 89, 100},

{2, 93, 96, 85, 86},

{3, 83, 72, 95, 89},

{4, 91, 98, 79, 88}};

int last_grade = grades.GetUpperBound(1);

double average = 0.0;

int total;

int last_student = grades.GetUpperBound(0);

for(int row = 0; row <= last_student; row++) {

total = 0;

for (int col = 0; col <= last_grade; col++)

total += grades[row, col];

average = total / last_grade;

Console.WriteLine("Average: " + average);

}

}

32 ARRAYS AND ARRAYLISTS

Parameter Arrays

Most method definitions require that a set number of parameters be provided

to the method, but there are times when you want to write a method defini-

tion that allows an optional number of parameters. You can do this using a

construct called a parameter array.

A parameter array is specified in the parameter list of a method definition

by using the keyword ParamArray. The following method definition allows

any amount of numbers to be supplied as parameters, with the total of the

numbers returned from the method:

static int sumNums(params int[] nums) {

int sum = 0;

for(int i = 0; i <= nums.GetUpperBound(0); i++)

sum += nums[i];

return sum;

}

This method will work with the either of the following calls:

total = sumNums(1, 2, 3);

total = sumNums(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

When you define a method using a parameter array, the parameter array

arguments have to be supplied last in the parameter list in order for the

compiler to be able to process the list of parameters correctly. Otherwise, the

compiler wouldn’t know the ending point of the parameter array elements

and the beginning of other parameters of the method.

Jagged Arrays

When you create a multidimensional array, you always create a structure that

has the same number of elements in each of the rows. For example, look at

the following array declaration:

int sales[,] = new int[12,30]; ' Sales for each day of

each month

Array Basics 33

This array assumes each row (month) has the same number of elements

(days), when we know that some months have 30 days, some have 31, and

one month has 29. With the array we’ve just declared, there will be several

empty elements in the array. This isn’t much of a problem for this array, but

with a much larger array we end up with a lot of wasted space.

The solution to this problem is to use a jagged array instead of a two-

dimensional array. A jagged array is an array of arrays where each row of

an array is made up of an array. Each dimension of a jagged array is a one-

dimensional array. We call it a “jagged” array because the number of elements

in each row may be different. A picture of a jagged array would not be square

or rectangular, but would have uneven or jagged edges.

A jagged array is declared by putting two sets of parentheses after the array

variable name. The first set of parentheses indicates the number of rows in

the array. The second set of parentheses is left blank. This marks the place for

the one-dimensional array that is stored in each row. Normally, the number

of rows is set in an initialization list in the declaration statement, like this:

int[][] jagged = new int[12][];

This statement looks strange, but makes sense when you break it down. jagged

is an Integer array of 12 elements, where each of the elements is also an Integer

array. The initialization list is actually just the initialization for the rows of

the array, indicating that each row element is an array of 12 elements, with

each element initialized to the default value.

Once the jagged array is declared, the elements of the individual row

arrays can be assigned values. The following code fragment assigns values

to jaggedArray:

jagged[0][0] = 23;

jagged[0][1] = 13;

. . .

jagged[7][5] = 45;

The first set of parentheses indicates the row number and the second set

indicates the element of the row array. The first statement accesses the first

element of the first array, the second element access the second element of

the first array, and the third statement accesses the sixth element of the eighth

array.

34 ARRAYS AND ARRAYLISTS

For an example of using a jagged array, the following program creates an

array named sales (tracking one week of sales for two months), assigns sales

figures to its elements, and then loops through the array to calculate the

average sales for one week of each of the two months stored in the array.

using System;

class class1 {

static void Main[] {

int[] Jan = new int[31];

int[] Feb = new int[29];

int[][] sales = new int{Jan, Feb};

int month, day, total;

double average = 0.0;

sales[0][0] = 41;

sales[0][1] = 30;

sales[0][0] = 41;

sales[0][1] = 30;

sales[0][2] = 23;

sales[0][3] = 34;

sales[0][4] = 28;

sales[0][5] = 35;

sales[0][6] = 45;

sales[1][0] = 35;

sales[1][1] = 37;

sales[1][2] = 32;

sales[1][3] = 26;

sales[1][4] = 45;

sales[1][5] = 38;

sales[1][6] = 42;

for(month = 0; month <= 1; month++) {

total = 0;

for(day = 0; day <= 6; day++)

total += sales[month][day];

average = total / 7;

Console.WriteLine("Average sales for month: " +

month + ": " + average);

}

}

}

Array Basics 35

The ArrayList Class

Static arrays are not very useful when the size of an array is unknown in

advance or is likely to change during the lifetime of a program. One solu-

tion to this problem is to use a type of array that automatically resizes itself

when the array is out of storage space. This array is called an ArrayList

and it is part of the System.Collections namespace in the .NET Framework

library.

An ArrayList object has a Capacity property that stores its size. The initial

value of the property is 16. When the number of elements in an ArrayList

reaches this limit, the Capacity property adds another 16 elements to the

storage space of the ArrayList. Using an ArrayList in a situation where the

number of elements in an array can grow larger, or smaller, can be more

efficient than using ReDim Preserver with a standard array.

As we discussed in Chapter 1, an ArrayList stores objects using the Object

type. If you need a strongly typed array, you should use a standard array or

some other data structure.

Members of the ArrayList Class

The ArrayList class includes several methods and properties for working with

ArrayLists. Here is a list of some of the most commonly used methods and

properties:

� Add(): Adds an element to the ArrayList.
� AddRange(): Adds the elements of a collection to the end of the ArrayList.
� Capacity: Stores the number of elements the ArrayList can hold.
� Clear(): Removes all elements from the ArrayList.
� Contains(): Determines if a specified item is in the ArrayList.
� CopyTo(): Copies the ArrayList or a segment of it to an array.
� Count: Returns the number of elements currently in the ArrayList.
� GetEnumerator(): Returns an enumerator to iterate over the ArrayList.
� GetRange(): Returns a subset of the ArrayList as an ArrayList.
� IndexOf(): Returns the index of the first occurrence of the specified

item.
� Insert(): Insert an element into the ArrayList at a specified index.
� InsertRange(): Inserts the elements of a collection into the ArrayList starting

at the specified index.

36 ARRAYS AND ARRAYLISTS

� Item(): Gets or sets an element at the specified index.
� Remove(): Removes the first occurrence of the specified item.
� RemoveAt(): Removes an element at the specified index.
� Reverse(): Reverses the order of the elements in the ArrayList.
� Sort(): Alphabetically sorts the elements in the ArrayList.
� ToArray(): Copies the elements of the ArrayList to an array.
� TrimToSize(): Sets the capacity of the ArrayList to the number of elements

in the ArrayList.

Using the ArrayList Class

ArrayLists are not used like standard arrays. Normally, items are just added

to an ArrayList using the Add method, unless there is a reason why an item

should be added at a particular position, in which case the Insert method

should be used. In this section, we examine how to use these and the other

members of the ArrayList class.

The first thing we have to do with an ArrayList is declare it, as follows:

ArrayList grades = new ArrayList();

Notice that a constructor is used in this declaration. If an ArrayList is not

declared using a constructor, the object will not be available in later program

statements.

Objects are added to an ArrayList using the Add method. This method

takes one argument—an Object to add to the ArrayList. The Add method also

returns an integer indicating the position in the ArrayList where the element

was added, though this value is rarely used in a program. Here are some

examples:

grades.Add(100);

grades.Add(84);

int position;

position = grades.Add(77);

Console.WriteLine("The grade 77 was added at position:

" + position);

The objects in an ArrayList can be displayed using a For Each loop. The

ArrayList has a built-in enumerator that manages iterating through all the

Array Basics 37

objects in the ArrayList, one at a time. The following code fragment demon-

strates how to use a For Each loop with an ArrayList:

int total = 0;

double average = 0.0;

foreach (Object grade in grades)

total += (int)grade;

average = total / grades.Count;

Console.WriteLine("The average grade is: " + average);

If you want to add an element to an ArrayList at a particular position,

you can use the Insert method. This method takes two arguments: the index

to insert the element, and the element to be inserted. The following code

fragment inserts two grades in specific positions in order to preserve the

order of the objects in the ArrayList:

grades.Insert(1, 99);

grades.Insert(3, 80);

You can check the current capacity of an ArrayList by calling the Capacity

property and you can determine how many elements are in an ArrayList by

calling the Count property:

Console.WriteLine("The current capacity of grades is:

" + grades.Capacity);

Console.WriteLine("The number of grades in grades is:

" + grades.Count);

There are several ways to remove items from an ArrayList. If you know

the item you want to remove, but don’t know what position it is in, you can

use the Remove method. This method takes just one argument—an object to

remove from the ArrayList. If the object exists in the ArrayList, it is removed. If

the object isn’t in the ArrayList, nothing happens. When a method like Remove

is used, it is typically called inside an If–Then statement using a method that

can verify the object is actually in the ArrayList, such as the Contains method.

Here’s a sample code fragment:

if (grades.Contains(54))

grades.Remove(54)

else

Console.Write("Object not in ArrayList.");

38 ARRAYS AND ARRAYLISTS

If you know the index of the object you want to remove, you can use the

RemoveAt method. This method takes one argument—the index of the object

you want to remove. The only exception you can cause is passing an invalid

index to the method. The method works like this:

grades.RemoveAt(2);

You can determine the position of an object in an ArrayList by calling the

IndexOf method. This method takes one argument, an object, and returns

the object’s position in the ArrayList. If the object is not in the ArrayList, the

method returns -1. Here’s a short code fragment that uses the IndexOf method

in conjunction with the RemoveAt method:

int pos;

pos = grades.IndexOf(70);

grades.RemoveAt(pos);

In addition to adding individual objects to an ArrayList, you can also add

ranges of objects. The objects must be stored in a data type that is derived

from ICollection. This means that the objects can be stored in an array, a

Collection, or even in another ArrayList.

There are two different methods you can use to add a range to an ArrayList.

These methods are AddRange and InsertRange. The AddRange method adds

the range of objects to the end of the ArrayList, and the InsertRange method

adds the range at a specified position in the ArrayList.

The following program demonstrates how these two methods are used:

using System;

using System.Collections;

class class1 {

static void Main() {

ArrayList names = new ArrayList();

names.Add("Mike");

names.Add("Beata");

names.Add("Raymond");

names.Add("Bernica");

names.Add("Jennifer");

Console.WriteLine("The original list of names: ");

Array Basics 39

foreach (Object name in names)

Console.WriteLine(name);

Console.WriteLine();

string[] newNames = new string[] {"David", "Michael"};

ArrayList moreNames = new ArrayList();

moreNames.Add("Terrill");

moreNames.Add("Donnie");

moreNames.Add("Mayo");

moreNames.Add("Clayton");

moreNames.Add("Alisa");

names.InsertRange(0, newNames);

names.AddRange(moreNames);

Console.WriteLine("The new list of names: ");

foreach (Object name in names)

Console.WriteLine(name);

}

}

The output from this program is:

David

Michael

Mike

Bernica

Beata

Raymond

Jennifer

Terrill

Donnie

Mayo

Clayton

Alisa

The first two names are added at the beginning of the ArrayList because

the specified index is 0. The last names are added at the end because the

AddRange method is used.

Two other methods that many programmers find useful are the ToArray

method and the GetRange method. The GetRange method returns a range of

objects from the ArrayList as another ArrayList. The ToArray method copies

40 ARRAYS AND ARRAYLISTS

all the elements of the ArrayList to an array. Let’s look first at the GetRange

method.

The GetRange method takes two arguments: the starting index and the

number of elements to retrieve from the ArrayList. GetRange is not destruc-

tive, in that the objects are just copied from the original ArrayList into the

new ArrayList. Here’s an example of how the method works, using the same

aforementioned program:

ArrayList someNames = new ArrayList();

someNames = names.GetRange(2,4);

Console.WriteLine("someNames sub-ArrayList: ");

foreach (Object name in someNames)

Console.WriteLine(name);

The output from this program fragment is:

Mike

Bernica

Beata

Raymond

The ToArray method allows you to easily transfer the contents of an

ArrayList to a standard array. The primary reason you will use the ToArray

method is because you need the faster access speed of an array.

The ToArray method takes no arguments and returns the elements of the

ArrayList to an array. Here’s an example of how to use the method:

Object[] arrNames;

arrNames = names.ToArray();

Console.WriteLine("Names from an array: ");

for(int i = 0; i <= arrNames.GetUpperBound(0); i++)

Console.WriteLine(arrNames[i]);

The last part of the code fragment proves that the elements from the ArrayList

have actually been stored in the array arrNames.

SUMMARY

The array is the most commonly used data structure in computer program-

ming. Most, if not all, computer languages provide some type of built-in array.

Exercises 41

For many applications, the array is the easiest data structure to implement

and the most efficient. Arrays are useful in situations where you need direct

access to “far away” elements of your data set.

The .NET Framework introduces a new type of array called an ArrayList.

ArrayLists have many of the features of the array, but are somewhat more

powerful because they can resize themselves when the current capacity of the

structure is full. The ArrayList also has several useful methods for performing

insertions, deletions, and searches. Since C# does not allow a programmer to

dynamically resize an array as you can in VB.NET, the ArrayList is a useful data

structure for situations where you can’t know in advance the total number of

items for storage.

EXERCISES

1. Design and implement a class that allows a teacher to track the grades

in a single course. Include methods that calculate the average grade, the

highest grade, and the lowest grade. Write a program to test your class

implementation.

2. Modify Exercise 1 so that the class can keep track of multiple courses.

Write a program to test your implementation.

3. Rewrite Exercise 1 using an ArrayList. Write a program to test your imple-

mentation and compare its performance to that of the array implementation

in Exercise 1 using the Timing class.

4. Design and implement a class that uses an array to mimic the behavior of

the ArrayList class. Include as many methods from the ArrayList class as

possible. Write a program to test your implementation.

CHAPTER 3

Basic Sorting Algorithms

The two most common operations performed on data stored in a computer

are sorting and searching. This has been true since the beginning of the com-

puting industry, which means that sorting and searching are also two of the

most studied operations in computer science. Many of the data structures dis-

cussed in this book are designed primarily to make sorting and/or searching

easier and more efficient on the data stored in the structure.

This chapter introduces you to the fundamental algorithms for sorting

and searching data. These algorithms depend on only the array as a data

structure and the only “advanced” programming technique used is recursion.

This chapter also introduces you to the techniques we’ll use throughout the

book to informally analyze different algorithms for speed and efficiency.

SORTING ALGORITHMS

Most of the data we work with in our day-to-day lives is sorted. We look up

definitions in a dictionary by searching alphabetically. We look up a phone

number by moving through the last names in the book alphabetically. The

post office sorts mail in several ways—by zip code, then by street address,

and then by name. Sorting is a fundamental process in working with data and

deserves close study.

42

Sorting Algorithms 43

As was mentioned earlier, there has been quite a bit of research performed

on different sorting techniques. Although some very sophisticated sorting

algorithms have been developed, there are also several simple sorting algo-

rithms you should study first. These sorting algorithms are the insertion sort,

the bubble sort, and the selection sort. Each of these algorithms is easy to

understand and easy to implement. They are not the best overall algorithms

for sorting by any means, but for small data sets and in other special circum-

stances, they are the best algorithms to use.

An Array Class Test Bed

To examine these algorithms, we will first need a test bed in which to imple-

ment and test them. We’ll build a class that encapsulates the normal operations

performed with an array—element insertion, element access, and displaying

the contents of the array. Here’s the code:

class CArray {

private int [] arr;

private int upper;

private int numElements;

public CArray(int size) {

arr = new int[size];

upper = size-1;

numElements = 0;

}

public void Insert(int item) {

arr[numElements] = item;

numElements++;

}

public void DisplayElements() {

for(int i = 0; i <= upper; i++)

Console.Write(arr[i] + " ");

}

public void Clear() {

for(int i = 0; i <= upper; i++)

44 BASIC SORTING ALGORITHMS

arr[i] = 0;

numElements = 0;

}

}

static void Main() {

CArray nums = new CArray();

for(int i = 0; i <= 49; i++)

nums.Insert(i);

nums.DisplayElements();

}

The output looks like this:

Before leaving the CArray class to begin the examination of sorting and

searching algorithms, let’s discuss how we’re going to actually store data in a

CArray class object. In order to demonstrate most effectively how the different

sorting algorithms work, the data in the array needs to be in a random order.

This is best achieved by using a random number generator to assign each

array element to the array.

Random numbers can be created in C# using the Random class. An object of

this type can generate random numbers. To instantiate a Random object, you

have to pass a seed to the class constructor. This seed can be seen as an upper

bound for the range of numbers the random number generator can create.

Here’s another look at a program that uses the CArray class to store num-

bers, using the random number generator to select the data to store in the

array:

static void Main() {

CArray nums = new CArray();

Random rnd = new Random(100);

for(int i = 0; i < 10; i++)

nums.Insert((int)(rnd.NextDouble() * 100));

nums.DisplayElements();

}

Sorting Algorithms 45

The output from this program is:

Bubble Sort

The first sorting algorithm to examine is the bubble sort. The bubble sort is

one of the slowest sorting algorithms available, but it is also one of the simplest

sorts to understand and implement, which makes it an excellent candidate

for our first sorting algorithm.

The sort gets its name because values “float like a bubble” from one end of

the list to another. Assuming you are sorting a list of numbers in ascending

order, higher values float to the right whereas lower values float to the left.

This behavior is caused by moving through the list many times, comparing

adjacent values and swapping them if the value to the left is greater than the

value to the right.

Figure 3.1 illustrates how the bubble sort works. Two numbers from the

numbers inserted into the array (2 and 72) from the previous example are

highlighted with circles. You can watch how 72 moves from the beginning of

the array to the middle of the array, and you can see how 2 moves from just

past the middle of the array to the beginning of the array.

72 54 59 30 31 78 2 77 82 72

54 58 30 31 72 2 77 78 72 82

54 30 32 58 2 72 72 77 78 82

30 32 54 2 58 72 72 77 78 82

30 32 2 54 58 72 72 77 78 82

30 2 32 54 58 72 72 77 78 82

2 30 32 54 58 72 72 77 78 82

FIGURE 3.1. The Bubble Sort.

46 BASIC SORTING ALGORITHMS

The code for the BubbleSort algorithm is shown as follows:

public void BubbleSort() {

int temp;

for(int outer = upper; outer >= 1; outer--) {

for(int inner = 0; inner <= outer-1;inner++)

if ((int)arr[inner] > arr[inner+1]) {

temp = arr[inner];

arr[inner] = arr[inner+1];

arr[inner+1] = temp;

}

}

}

There are several things to notice about this code. First, the code to swap

two array elements is written in line rather than as a subroutine. A swap

subroutine might slow down the sorting since it will be called many times.

Since the swap code is only three lines long, the clarity of the code is not

sacrificed by not putting the code in its own subroutine.

More importantly, notice that the outer loop starts at the end of the array

and moves toward the beginning of the array. If you look back at Figure 3.1,

the highest value in the array is in its proper place at the end of the array.

This means that the array indices that are greater than the value in the outer

loop are already in their proper place and the algorithm doesn’t need to access

these values any more.

The inner loop starts at the first element of the array and ends when it

gets to the next to last position in the array. The inner loop compares the

two adjacent positions indicated by inner and inner +1, swapping them if

necessary.

Examining the Sorting Process

One of the things you will probably want to do while developing an algorithm

is viewing the intermediate results of the code while the program is running.

When you’re using Visual Studio.NET, it’s possible to do this using the Debug-

ging tools available in the IDE. However, sometimes, all you really want to see

is a display of the array (or whatever data structure you are building, sorting,

Sorting Algorithms 47

or searching). An easy way to do this is to insert a displaying method in the

appropriate place in the code.

For the aforementioned BubbleSort method, the best place to examine how

the array changes during the sorting is between the inner loop and the outer

loop. If we do this for each iteration of the two loops, we can view a record

of how the values move through the array while they are being sorted.

For example, here is the BubbleSort method modified to display interme-

diate results:

public void BubbleSort() {

int temp;

for(int outer = upper; outer >= 1; outer--) {

for(int inner = 0; inner <= outer-1;inner++) {

if ((int)arr[inner] > arr[inner+1]) {

temp = arr[inner];

arr[inner] = arr[inner+1];

arr[inner+1] = temp;

}

}

this.DisplayElements();

}

}

The DisplayElements() method is placed between the two For loops. If the

main program is modified as follows:

static void Main() {

CArray nums = new CArray(10);

Random rnd = new Random(100);

for(int i = 0; i < 10; i++)

nums.Insert((int)(rnd.NextDouble() * 100));

Console.WriteLine("Before sorting: ");

nums.DisplayElements();

Console.WriteLine("During sorting: ");

nums.BubbleSort();

Console.WriteLine("After sorting: ");

nums.DisplayElements();

}

48 BASIC SORTING ALGORITHMS

the following output is displayed:

Selection Sort

The next sort to examine is the Selection sort. This sort works by starting at

the beginning of the array, comparing the first element with the other elements

in the array. The smallest element is placed in position 0, and the sort then

begins again at position 1. This continues until each position except the last

position has been the starting point for a new loop.

Two loops are used in the SelectionSort algorithm. The outer loop moves

from the first element in the array to the next to last element, whereas the inner

loop moves from the second element of the array to the last element, looking

for values that are smaller than the element currently being pointed at by the

outer loop. After each iteration of the inner loop, the most minimum value

in the array is assigned to its proper place in the array. Figure 3.2 illustrates

how this works with the CArray data used before.

The code to implement the SelectionSort algorithm is shown as follows:

public void SelectionSort() {

int min, temp;

for(int outer = 0; outer <= upper; outer++) {

min = outer;

for(int inner = outer + 1; inner <= upper; inner++)

if (arr[inner] < arr[min])

min = inner;

temp = arr[outer];

arr[outer] = arr[min];

arr[min] = temp;

}

}

Sorting Algorithms 49

72 54 59 30 31 78 2 77 82 72

2 54 59 30 31 78 72 77 82 72

2 30 59 54 31 78 72 77 82 72

2 30 31 54 59 78 72 77 82 72

2 30 31 54 59 78 72 77 82 72

2 30 31 54 59 78 72 77 82 72

2 30 31 54 59 72 78 77 82 72

2 30 31 54 59 72 72 77 82 78

2 30 31 54 59 72 72 77 82 78

2 30 31 54 59 72 72 77 78 82

FIGURE 3.2. The Selection Sort.

To demonstrate how the algorithm works, place a call to the showArray()

method right before the Next statement that is attached to the outer loop. The

output should look something like this:

The final basic sorting algorithm we’ll look at in this chapter is one of the

simplest to understand—the Insertion sort.

50 BASIC SORTING ALGORITHMS

Insertion Sort

The Insertion sort is an analog to the way we normally sort things numerically

or alphabetically. Let’s say that I have asked a class of students to turn in index

card with their names, id numbers, and a short biographical sketch. The

students return the cards in random order, but I want them to be alphabetized

so I can build a seating chart.

I take the cards back to my office, clear off my desk, and take the first card.

The name on the card is Smith. I place it at the top left position of the desk

and take the second card. It is Brown. I move Smith over to the right and

put Brown in Smith’s place. The next card is Williams. It can be inserted at

the right without having to shift any other cards. The next card is Acklin.

It has to go at the beginning of the list, so each of the other cards must be

shifted one position to the right to make room. That is how the Insertion sort

works.

The code for the Insertion sort is shown here, followed by an explanation

of how it works:

public void InsertionSort() {

int inner, temp;

for(int outer = 1; outer <= upper; outer++) {

temp = arr[outer];

inner = outer;

while(inner > 0 && arr[inner-1] >= temp) {

arr[inner] = arr[inner-1];

inner -= 1;

}

arr[inner] = temp;

}

}

The Insertion sort has two loops. The outer loop moves element by element

through the array whereas the inner loop compares the element chosen in the

outer loop to the element next to it in the array. If the element selected by the

outer loop is less than the element selected by the inner loop, array elements

are shifted over to the right to make room for the inner loop element, just as

described in the preceding example.

Now let’s look at how the Insertion sort works with the set of numbers

sorted in the earlier examples. Here’s the output:

Timing Comparisons of the Basic Sorting Algorithms 51

This display clearly shows that the Insertion sort works not by making

exchanges, but by moving larger array elements to the right to make room for

smaller elements on the left side of the array.

TIMING COMPARISONS OF THE BASIC SORTING

ALGORITHMS

These three sorting algorithms are very similar in complexity and theoretically,

at least, should perform similarly when compared with each other. We can

use the Timing class to compare the three algorithms to see if any of them

stand out from the others in terms of the time it takes to sort a large set of

numbers.

To perform the test, we used the same basic code we used earlier to

demonstrate how each algorithm works. In the following tests, however,

the array sizes are varied to demonstrate how the three algorithms perform

with both smaller data sets and larger data sets. The timing tests are run for

array sizes of 100 elements, 1,000 elements, and 10,000 elements. Here’s the

code:

static void Main() {

Timing sortTime = new Timing();

Random rnd = new Random(100);

int numItems = 1000;

CArray theArray = new CArray(numItems);

for(int i = 0; i < numItems; i++)

52 BASIC SORTING ALGORITHMS

theArray.Insert((int)(rnd.NextDouble() * 100));

sortTime.startTime();

theArray.SelectionSort();

sortTime.stopTime();

Console.WriteLine("Time for Selection sort: " +

sortTime.getResult().

TotalMilliseconds);

theArray.Clear();

for(int i = 0; i < numItems; i++)

theArray.Insert((int)(rnd.NextDouble() * 100));

sortTime.startTime();

theArray.BubbleSort();

sortTime.stopTime();

Console.WriteLine("Time for Bubble sort: " +

sortTime.getResult().

TotalMilliseconds);

theArray.Clear();

for(int i = 0; i < numItems; i++)

theArray.Insert((int)(rnd.NextDouble() * 100));

sortTime.startTime();

theArray.InsertionSort();

sortTime.stopTime();

Console.WriteLine("Time for Selection sort: " +

sortTime.getResult().

TotalMilliseconds);

}

The output from this program is:

showing that the Selection and Bubble sorts perform at the same speed and

the Insertion sort is about half as fast (or twice as slow).

Summary 53

Now let’s compare the algorithms when the array size is 1,000 elements:

Here we see that the size of the array makes a big difference in the performance

of the algorithm. The Selection sort is over 100 times faster than the Bubble

sort and over 200 times faster than the Insertion sort.

When we increase the array size to 10,000 elements, we can really see the

effect of size on the three algorithms:

The performance of all three algorithms degrades considerably, though the

Selection sort is still many times faster than the other two. Clearly, none of

these algorithms is ideal for sorting large data sets. There are sorting algo-

rithms, though, that can handle large data sets more efficiently. We’ll examine

their design and use in Chapter 16.

SUMMARY

In this chapter, we discussed three algorithms for sorting data—the Selection

sort, the Bubble sort, and the Insertion sort. All of these algorithms are fairly

easy to implement and they all work well with small data sets. The Selec-

tion sort is the most efficient of the algorithms, followed by the Bubble sort

and the Insertion sort. As we saw at the end of the chapter, none of these

algorithms is well suited for larger data sets (i.e., more than a few thousand

elements).

54 BASIC SORTING ALGORITHMS

EXERCISES

1. Create a data file consisting of at least 100 string values. You can create the

list yourself, or perhaps copy the values from a text file of some type, or you

can even create the file by generating random strings. Sort the file using

each of the sorting algorithms discussed in the chapter. Create a program

that times each algorithm and outputs the times similar to the output from

the last section of this chapter.

2. Create an array of 1,000 integers sorted in numerical order. Write a program

that runs each sorting algorithm with this array, timing each algorithm, and

compare the times. Compare these times to the times for sorting a random

array of integers.

3. Create an array of 1,000 integers sorted in reverse numerical order. Write

a program that runs each sorting algorithm with this array, timing each

algorithm, and compare the times.

CHAPTER 4

Basic Searching Algorithms

Searching for data is a fundamental computer programming task and one

that has been studied for many years. This chapter looks at just one aspect of

the search problem—searching for a given value in a list (array).

There are two fundamental ways to search for data in a list: the sequential

search and the binary search. Sequential search is used when the items in the

list are in random order; binary search is used when the items are sorted in

the list.

SEQUENTIAL SEARCHING

The most obvious type of search is to begin at the beginning of a set of

records and move through each record until you find the record you are

looking for or you come to the end of the records. This is called a sequential

search.

A sequential search (also called a linear search) is very easy to implement.

Start at the beginning of the array and compare each accessed array element

to the value you’re searching for. If you find a match, the search is over. If you

get to the end of the array without generating a match, then the value is not

in the array.

55

56 BASIC SEARCHING ALGORITHMS

Here is a function that performs a sequential search:

bool SeqSearch(int[] arr, int sValue) {

for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return true;

return false;

}

If a match is found, the function immediately returns True and exits.

If the end of the array is reached without the function returning True,

then the value being searched for is not in array and the function returns

False.

Here is a program to test our implementation of a sequential search:

using System;

using System.IO;

public class Chapter4 {

static void Main() {

int [] numbers = new int[100];

StreamReader numFile =

File.OpenText("c:\\numbers.txt");

for (int i = 0; i < numbers.Length-1; i++)

numbers[i] =

Convert.ToInt32(numFile.ReadLine(), 10);

int searchNumber;

Console.Write("Enter a number to search for: ");

searchNumber = Convert.ToInt32(Console.ReadLine(),

10);

bool found;

found = SeqSearch(numbers, searchNumber);

if (found)

Console.WriteLine(searchNumber + " is in the

array.");

else

Console.WriteLine(searchNumber + " is not in the

array.");

Sequential Searching 57

}

static bool SeqSearch(int[] arr, int sValue) {

for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return true;

return false;

}

}

The program works by first reading in a set of data from a text file. The data

consists of the first 100 integers, stored in the file in a partially random order.

The program then prompts the user to enter a number to search for and calls

the SeqSearch function to perform the search.

You can also write the sequential search function so that the function returns

the position in the array where the searched-for value is found or a −1 if the

value cannot be found. First, let’s look at the new function:

static int SeqSearch(int[] arr, int sValue) {

for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return index;

return -1;

}

The following program uses this function:

using System;

using System.IO;

public class Chapter4 {

static void Main() {

int [] numbers = new int[100];

StreamReader numFile =_

File.OpenText("c:\\numbers.txt");

for (int i = 0; i < numbers.Length-1; i++)

numbers[i] = Convert.ToInt32(numFile.ReadLine(),

10);

58 BASIC SEARCHING ALGORITHMS

int searchNumber;

Console.Write("Enter a number to search for: ");

searchNumber = Convert.ToInt32(Console.ReadLine(),

10);

int foundAt;

foundAt = SeqSearch(numbers, searchNumber);

if (foundAt >= 0)

Console.WriteLine(searchNumber + " is in the_

array at position " + foundAt);

else

Console.WriteLine(searchNumber + " is not in the

array.");

}

static int SeqSearch(int[] arr, int sValue) {

for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return index;

return -1;

}

}

Searching for Minimum and Maximum Values

Computer programs are often asked to search an array (or other data structure)

for minimum and maximum values. In an ordered array, searching for these

values is a trivial task. Searching an unordered array, however, is a little more

challenging.

Let’s start by looking at how to find the minimum value in an array. The

algorithm is:

1. Assign the first element of the array to a variable as the minimum value.

2. Begin looping through the array, comparing each successive array element

with the minimum value variable.

3. If the currently accessed array element is less than the minimum value,

assign this element to the minimum value variable.

4. Continue until the last array element is accessed.

5. The minimum value is stored in the variable.

Sequential Searching 59

Let’s look at a function, FindMin, which implements this algorithm:

static int FindMin(int[] arr) {

int min = arr[0];

for(int i = 0; i < arr.Length-1; i++)

if (arr[index] < min)

min = arr[index];

return min;

}

Notice that the array search starts at position 1 and not at position 0. The

0th position is assigned as the minimum value before the loop starts, so we

can start making comparisons at position 1.

The algorithm for finding the maximum value in an array works in the same

way. We assign the first array element to a variable that holds the maximum

amount. Next we loop through the array, comparing each array element with

the value stored in the variable, replacing the current value if the accessed

value is greater. Here’s the code:

static int FindMax(int[] arr) {

int max = arr[0];

for(int i = 0; i < arr.Length-1; i++)

if (arr[index] > max)

max = arr[index];

return max;

}

An alternative version of these two functions could return the position of

the maximum or minimum value in the array rather than the actual value.

Making Sequential Search Faster: Self-Organizing Data

The fastest successful sequential searches occur when the data element being

searched for is at the beginning of the data set. You can ensure that a success-

fully located data item is at the beginning of the data set by moving it there

after it has been found.

The concept behind this strategy is that we can minimize search times

by putting frequently searched-for items at the beginning of the data set.

60 BASIC SEARCHING ALGORITHMS

Eventually, all the most frequently searched-for data items will be located at

the beginning of the data set. This is an example of self-organization, in that

the data set is organized not by the programmer before the program runs, but

by the program while the program is running.

It makes sense to allow your data to organize in this way since the data being

searched probably follows the “80–20” rule, meaning that 80% of the searches

conducted on your data set are searching for 20% of the data in the data set.

Self-organization will eventually put that 20% at the beginning of the data set,

where a sequential search will find them quickly.

Probability distributions such as this are called Pareto distributions, named

for Vilfredo Pareto, who discovered these distributions studying the spread of

income and wealth in the late nineteenth century. See Knuth (1998, pp. 399–

401) for more on probability distributions in data sets.

We can modify our SeqSearch method quite easily to include self-

organization. Here’s a first stab at the method:

static bool SeqSearch(int sValue) {

for(int index = 0; i < arr.Length-1; i++)

if (arr[index] == sValue) {

swap(index, index-1);

return true;

}

return false;

}

If the search is successful, the item found is switched with the element at

the first of the array using a swap function, shown as follows:

static void swap(ref int item1, ref int item2) {

int temp = arr[item1];

arr[item1] = arr[item2];

arr[item2] = temp;

}

The problem with the SeqSearch method as we’ve modified it is that fre-

quently accessed items might be moved around quite a bit during the course

of many searches. We want to keep items that are moved to the first of the

Sequential Searching 61

data set there and not moved farther back when a subsequent item farther

down in the set is successfully located.

There are two ways we can achieve this goal. First, we can only swap found

items if they are located away from the beginning of the data set. We only

have to determine what is considered to be far enough back in the data set to

warrant swapping. Following the “80–20” rule again, we can make a rule that

a data item is relocated to the beginning of the data set only if its location is

outside the first 20% of the items in the data set. Here’s the code for this first

rewrite:

static int SeqSearch(int sValue) {

for(int index = 0; i < arr.Length-1; i++)

if (arr[index] == sValue && index > (arr.Length *_

0.2)) {

swap(index, index-1);

return index;

} else

if (arr[index] == sValue)

return index;

return -1;

}

The If–Then statement is short-circuited because if the item isn’t found in

the data set, there’s no reason to test to see where the index is in the data set.

The other way we can rewrite the SeqSearch method is to swap a found item

with the element that precedes it in the data set. Using this method, which

is similar to how data is sorted using the Bubble sort, the most frequently

accessed items will eventually work their way up to the front of the data set.

This technique also guarantees that if an item is already at the beginning of

the data set, it won’t move back down.

The code for this new version of SeqSearch is shown as follows:

static int SeqSearch(int sValue) {

for(int index = 0; i < arr.Length-1; i++)

if (arr[index] == sValue) {

swap(index, index-1);

return index;

}

return -1;

}

62 BASIC SEARCHING ALGORITHMS

Either of these solutions will help your searches when, for whatever reason,

you must keep your data set in an unordered sequence. In the next section, we

will discuss a search algorithm that is more efficient than any of the sequen-

tial algorithms mentioned, but that only works on ordered data—the binary

search.

Binary Search

When the records you are searching through are sorted into order, you can

perform a more efficient search than the sequential search to find a value. This

search is called a binary search.

To understand how a binary search works, imagine you are trying to guess

a number between 1 and 100 chosen by a friend. For every guess you make,

the friend tells you if you guessed the correct number, or if your guess is too

high, or if your guess is too low. The best strategy then is to choose 50 as

the first guess. If that guess is too high, you should then guess 25. If 50 is to

low, you should guess 75. Each time you guess, you select a new midpoint

by adjusting the lower range or the upper range of the numbers (depending

on if your guess is too high or too low), which becomes your next guess.

As long as you follow that strategy, you will eventually guess the correct

number. Figure 4.1 demonstrates how this works if the number to be chosen

is 82.

We can implement this strategy as an algorithm, the binary search algo-

rithm. To use this algorithm, we first need our data stored in order (ascending,

preferably) in an array (though other data structures will work as well). The

first steps in the algorithm are to set the lower and upper bounds of the search.

At the beginning of the search, this means the lower and upper bounds of the

array. Then, we calculate the midpoint of the array by adding the lower and

upper bounds together and dividing by 2. The array element stored at this

position is compared to the searched-for value. If they are the same, the value

has been found and the algorithm stops. If the searched-for value is less than

the midpoint value, a new upper bound is calculated by subtracting 1 from the

midpoint. Otherwise, if the searched-for value is greater than the midpoint

value, a new lower bound is calculated by adding 1 to the midpoint. The

algorithm iterates until the lower bound equals the upper bound, which indi-

cates the array has been completely searched. If this occurs, a -1 is returned,

indicating that no element in the array holds the value being searched

for.

Sequential Searching 63

Guessing Game-Secret number is 82

25 50 75 82
1 100

Answer : Too low

First Guess : 50

75 82
51 100

Answer : Too low

Second Guess : 75

82 88
76 100

Answer : Too high

Third Guess : 88

81 82
76 87

Answer : Too low

Fourth Guess : 81

84
82 87

Answer : Too high

Midpoint is 82.5, which is rounded to 82

Fifth Guess : 84

Answer : Correct

Sixth Guess : 82

82 83

FIGURE 4.1. A Binary Search Analogy.

Here’s the algorithm written as a C# function:

static int binSearch(int value) {

int upperBound, lowerBound, mid;

upperBound = arr.Length-1;

lowerBound = 0;

while(lowerBound <= upperBound) {

mid = (upperBound + lowerBound) / 2;

64 BASIC SEARCHING ALGORITHMS

if (arr[mid] == value)

return mid;

else

if (value < arr[mid])

upperBound = mid - 1;

else

lowerBound = mid + 1;

}

return -1;

}

Here’s a program that uses the binary search method to search an array:

static void Main(string[] args)

{

Random random = new Random();

CArray mynums = new CArray(9);

for(int i = 0; i <= 9; i++)

mynums.Insert(random.next(100));

mynums.SortArr();

mynums.showArray();

int position = mynums.binSearch(77, 0, 0);

if (position >= -1)

{

Console.WriteLine("found item");

mynums.showArray();

} else

Console.WriteLine("Not in the array");

Console.Read();

}

A Recursive Binary Search Algorithm

Although the version of the binary search algorithm developed in the previ-

ous section is correct, it’s not really a natural solution to the problem. The

binary search algorithm is really a recursive algorithm because, by constantly

subdividing the array until we find the item we’re looking for (or run out of

room in the array), each subdivision is expressing the problem as a smaller

Sequential Searching 65

version of the original problem. Viewing the problem this ways leads us to

discover a recursive algorithm for performing a binary search.

In order for a recursive binary search algorithm to work, we have to make

some changes to the code. Let’s take a look at the code first and then we’ll

discuss the changes we’ve made:

public int RbinSearch(int value, int lower, int upper) {

if (lower > upper)

return -1;

else {

int mid;

mid = (int)(upper+lower) / 2;

if (value < arr[mid])

RbinSearch(value, lower, mid-1);

else if (value = arr[mid])

return mid;

else

RbinSearch(value, mid+1, upper)

}

}

The main problem with the recursive binary search algorithm, as compared

to the iterative algorithm, is its efficiency. When a 1,000-element array is sorted

using both algorithms, the recursive algorithm is consistently 10 times slower

than the iterative algorithm:

Of course, recursive algorithms are often chosen for other reasons than effi-

ciency, but you should keep in mind that anytime you implement a recursive

algorithm, you should also look for an iterative solution so that you can

compare the efficiency of the two algorithms.

Finally, before we leave the subject of binary search, we should mention that

the Array class has a built-in binary search method. It takes two arguments,

66 BASIC SEARCHING ALGORITHMS

an array name and an item to search for, and it returns the position of the item

in the array, or -1 if the item can’t be found.

To demonstrate how the method works, we’ve written yet another binary

search method for our demonstration class. Here’s the code:

public int Bsearh(int value) {

return Array.BinarySearch(arr, value)

}

When the built-in binary search method is compared with our custom-

built method, it consistently performs 10 times faster than the custom-built

method, which should not be surprising. A built-in data structure or algorithm

should always be chosen over one that is custom-built, if the two can be used

in exactly the same ways.

SUMMARY

Searching a data set for a value is a ubiquitous computational operation. The

simplest method of searching a data set is to start at the beginning and search

for the item until either the item is found or the end of the data set is reached.

This searching method works best when the data set is relatively small and

unordered.

If the data set is ordered, the binary search algorithm is a better choice.

Binary search works by continually subdividing the data set until the item

being searched for is found. You can write the binary search algorithm using

both iterative and recursive codes. The Array class in C# includes a built-in

binary search method, which should be used whenever a binary search is

called for.

EXERCISES

1. The sequential search algorithm will always find the first occurrence of

an item in a data set. Create a new sequential search method that takes a

second integer argument indicating which occurrence of an item you want

to search for.

2. Write a sequential search method that finds the last occurrence of an item.

3. Run the binary search method on a set of unordered data. What happens?

Exercises 67

4. Using the CArray class with the SeqSearch method and the BinSearch

method, create an array of 1,000 random integers. Add a new private Inte-

ger data member named compCount that is initialized to 0. In each of the

search algorithms, add a line of code right after the critical comparison

is made that increments compCount by 1. Run both methods, searching

for the same number, say 734, with each method. Compare the values of

compCount after running both methods. What is the value of compCount

for each method? Which method makes the fewest comparisons?

CHAPTER 5

Stacks and Queues

Data organize naturally as lists. We have already used the Array and ArrayList

classes for handling data organized as a list. Although those data structures

helped us group the data in a convenient form for processing, neither structure

provides a real abstraction for actually designing and implementing problem

solutions.

Two list-oriented data structures that provide easy-to-understand abstrac-

tions are stacks and queues. Data in a stack are added and removed from

only one end of the list, whereas data in a queue are added at one end and

removed from the other end of a list. Stacks are used extensively in program-

ming language implementations, from everything from expression evaluation

to handling function calls. Queues are used to prioritize operating system pro-

cesses and to simulate events in the real world, such as teller lines at banks

and the operation of elevators in buildings.

C# provides two classes for using these data structures: the Stack class

and the Queue class. We’ll discuss how to use these classes and look at some

practical examples in this chapter.

STACKS, A STACK IMPLEMENTATION AND THE STACK CLASS

The stack is one of the most frequently used data structures, as we just men-

tioned. We define a stack as a list of items that are accessible only from the

68

Stacks, a Stack Implementation and the Stack Class 69

Push 1

1

Pop

1

Push 3

1

2

3

Push 2

1

2

Pop

1

2

Push 4

1

4

FIGURE 5.1. Pushing and Popping a Stack.

end of the list, which is called the top of the stack. The standard model for

a stack is the stack of trays at a cafeteria. Trays are always removed from the

top, and the when the dishwasher or busboy puts a tray back on the stack, it

is placed on the top also. A stack is known as a Last-in, First-out (LIFO) data

structure.

Stack Operations

The two primary operations of a stack are adding items to the stack and taking

items off the stack. The Push operation adds an item to a stack. We take an

item off the stack with a Pop operation. These operations are illustrated in

Figure 5.1.

The other primary operation to perform on a stack is viewing the top item.

The Pop operation returns the top item, but the operation also removes it

from the stack. We want to just view the top item without actually removing

it. This operation is named Peek in C#, though it goes by other names in other

languages and implementations (such as Top).

Pushing, popping, and peeking are the primary operations we perform

when using a stack; however, there are other operations we need to perform

and properties we need to examine. It is useful to be able to remove all the

items from a stack at one time. A stack is completed emptied by calling the

Clear operation. It is also useful to know how many items are in a stack at any

one time. We do this by calling the Count property. Many implementations

have a StackEmpty method that returns a true or false value depending on the

state of the stack, but we can use the Count property for the same purposes.

The Stack class of the .NET Framework implements all of these operations

and properties and more, but before we examine how to use them, let’s look

at how you would have to implement a stack if there wasn’t a Stack class.

70 STACKS AND QUEUES

A Stack Class Implementation

A Stack implementation has to use an underlying structure to hold data. We’ll

choose an ArrayList since we don’t have to worry about resizing the list when

new items are pushed onto the stack.

Since C# has such great object-oriented programming features, we’ll imple-

ment the stack as a class, called CStack. We’ll include a constructor method

and methods for the above-mentioned operations. The Count property is

implemented as a property in order to demonstrate how that’s done in C#.

Let’s start by examining the private data we need in the class.

The most important variable we need is an ArrayList object to store the

stack items. The only other data we need to keep track off is the top of the

stack, which we’ll do with a simple Integer variable that functions as an index.

The variable is initially set to −1 when a new CStack object is instantiated.

Every time a new item is pushed onto the stack, the variable is incremented

by 1.

The constructor method does nothing except initialize the index variable

to −1. The first method to implement is Push. The code calls the ArrayList

Add method and adds the value passed to it to the ArrayList. The Pop method

does three things: calls the RemoveAt method to take the top item off the

stack (out of the ArrayList), decrements the index variable by 1, and, finally,

returns the object popped off the stack.

The Peek method is implemented by calling the Item method with the

index variable as the argument. The Clear method simply calls an identical

method in the ArrayList class. The Count property is written as a read-only

property since we don’t want to accidentally change the number of items on

the stack.

Here’s the code:

class CStack

{

private int p_index;

private ArrayList list;

public CStack()

{

list = new ArrayList();

p_index = -1;

}

Stacks, a Stack Implementation and the Stack Class 71

public int count

{

get

{

return list.Count;

}

}

public void push(object item)

{

list.Add(item);

p_index++;

}

public object pop()

{

object obj = list[p_index];

list.RemoveAt(p_index);

p_index--;

return obj;

}

public void clear()

{

list.Clear();

p_index = -1;

}

public object peek()

{

return list[p_index];

}

}

Now let’s use this code to write a program that uses a stack to solve a problem.

A palindrome is a string that is spelled the same forward and backward.

For example, “dad”, “madam”, and “sees” are palindromes, whereas “hello” is

not a palindrome. One way to check strings to see if they’re palindromes is to

use a stack. The general algorithm is to read the string character by character,

pushing each character onto a stack when it’s read. This has the effect of

storing the string backwards. The next step is to pop each character off the

72 STACKS AND QUEUES

stack, comparing it to the corresponding letter starting at the beginning of

the original string. If at any point the two characters are not the same, the

string is not a palindrome and we can stop the program. If we get all the way

through the comparison, then the string is a palindrome.

Here’s the program, starting at Sub Main since we’ve already defined the

CStack class:

static void Main(string[] args)

{

CStack alist = new CStack();

string ch;

string word = "sees";

bool isPalindrome = true;

for(int x = 0; x < word.Length; x++)

alist.push(word.Substring(x, 1));

int pos = 0;

while (alist.count > 0)

{

ch = alist.pop().ToString();

if (ch != word.Substring(pos,1))

{

isPalindrome = false;

break;

}

pos++;

}

if (isPalindrome)

Console.WriteLine(word + " is a palindrome.");

else

Console.WriteLine(word + " is not a palindrome.");

Console.Read();

}

THE STACK CLASS

The Stack class is an implementation of the ICollection interface that rep-

resents a LIFO collection, or a stack. The class is implemented in the .NET

The Stack Class 73

Framework as a circular buffer, which enables space for items pushed on the

stack to be allocated dynamically.

The Stack class includes methods for pushing, popping, and peeking values.

There are also methods for determining the number of elements in the stack,

clearing the stack of all its values, and returning the stack values as an array.

Let’s start with discussing how the Stack class constructors work.

The Stack Constructor Methods

There are three ways to instantiate a stack object. The default constructor

instantiates an empty stack with an initial capacity of 10 values. The default

constructor is called as follows:

Stack myStack = new Stack();

A generic stack is instantiated as follows:

Stack<string> myStack = new Stack<string>();

Each time the stack reaches full capacity, the capacity is doubled.

The second Stack constructor method allows you to create a stack object

from another collection object. For example, you can pass the constructor as

an array and a stack is built from the existing array elements:

string[] names = new string[] {"Raymond", "David", "Mike"};

Stack nameStack = new Stack(names);

Executing the Pop method will remove “Mike” from the stack first.

You can also instantiate a stack object and specify the initial capacity of

the stack. This constructor comes in handy if you know in advance about

how many elements you’re going to store in the stack. You can make your

program more efficient when you construct your stack this way. If your stack

has 20 elements in it and it’s at total capacity, adding a new element will

involve 20 + 1 instructions because each element has to be shifted over to

accommodate the new element.

The code for instantiating a Stack object with an initial capacity looks like

this:

Stack myStack = new Stack(25);

74 STACKS AND QUEUES

The Primary Stack Operations

The primary operations you perform with a stack are Push and Pop. Data is

added to a stack with the Push method. Data is removed from the stack with

the Pop method. Let’s look at these methods in the context of using a stack

to evaluate simple arithmetic expressions.

This expression evaluator uses two stacks: one for the operands (numbers)

and another one for the operators. An arithmetic expression is stored as a

string. We parse the string into individual tokens, using a For loop to read

each character in the expression. If the token is a number, it is pushed onto

the number stack. If the token is an operator, it is pushed onto the operator

stack. Since we are performing infix arithmetic, we wait for two operands to

be pushed on the stack before performing an operation. At that point, we

pop the operands and an operand and perform the specified arithmetic. The

result is pushed back onto the stack and becomes the first operand of the next

operation. This continues until we run out of numbers to push and pop.

Here’s the code:

using System;

using System.Collections;

using System.Text.RegularExpressions;

namespace csstack

{

class Class1

{

static void Main(string[] args)

{

Stack nums = new Stack();

Stack ops = new Stack();

string expression = "5 + 10 + 15 + 20";

Calculate(nums, ops, expression);

Console.WriteLine(nums.Pop());

Console.Read();

}

// IsNumeric isn't built into C# so we must define it

static bool IsNumeric(string input)

{

bool flag = true;

The Stack Class 75

string pattern = (@"^\d+$");

Regex validate = new Regex(pattern);

if(!validate.IsMatch(input))

{

flag = false;

}

return flag;

}

static void Calculate(Stack N, Stack O, string exp)

{

string ch, token = "";

for(int p = 0; p < exp.Length; p++)

{

ch = exp.Substring(p, 1);

if (IsNumeric(ch))

token + = ch;

if (ch == " " || p == (exp.Length - 1))

{

if (IsNumeric(token))

{

N.Push(token);

token = "";

}

}

else if (ch == "+" || ch == "-" || ch == "*" ||

ch == "/")

O.Push(ch);

if (N.Count == 2)

Compute(N,O);

}

}

static void Compute(Stack N, Stack O)

{

int oper1, oper2;

string oper;

oper1 = Convert.ToInt32(N.Pop());

oper2 = Convert.ToInt32(N.Pop());

oper = Convert.ToString(O.Pop());

76 STACKS AND QUEUES

switch (oper)

{

case "+" :

N.Push(oper1 + oper2);

break;

case "-" :

N.Push(oper1 - oper2);

break;

case "*" :

N.Push(oper1 * oper2);

break;

case "/" :

N.Push(oper1 / oper2);

break;

}

}

}

}

It is actually easier to use a Stack to perform arithmetic using postfix

expressions. You will get a chance to implement a postfix evaluator in the

exercises.

The Peek Method

The Peek method lets us look at the value of an item at the top of a stack

without having to remove the item from the stack. Without this method, you

would have to remove an item from the stack just to get at its value. You will

use this method when you want to check the value of the item at the top of

the stack before you pop it off:

if (IsNumeric(Nums.Peek())

num = Nums.Pop():

The Clear Method

The Clear method removes all the items from a stack, setting the item count

to zero. It is hard to tell if the Clear method affects the capacity of a stack,

The Stack Class 77

since we can’t examine the actual capacity of a stack, so it’s best to assume the

capacity is set back to the initial default size of 10 elements.

A good use for the Clear method is to clear a stack if there is an error

in processing. For example, in our expression evaluator, if a division by 0

operation occurs, that is an error and we want to clear the stack:

if (oper2 == 0)

Nums.Clear();

The Contains Method

The Contains method determines if a specified element is located in a stack.

The method returns True if the element is found; False otherwise. We can use

this method to look for a value in the stack but not currently at the top of the

stack, such as a situation where a certain character in the stack might cause a

processing error:

if (myStack.Contains(" "))

StopProcessing();

else

ContinueProcessing();

The CopyTo and ToArray Methods

The CopyTo method copies the contents of a stack into an array. The array

must be of type Object since that is the data type of all stack objects. The

method takes two arguments: an array and the starting array index to begin

placing stack elements. The elements are copied in LIFO order, as if they were

popped from the stack. Here’s a short code fragment demonstrating a CopyTo

method call:

Stack myStack = new Stack();

for(int i = 20; i > 0; i--)

myStack.Push(i);

object [] myArray = new object[myStack.Count];

myStack.CopyTo(myArray, 0);

78 STACKS AND QUEUES

The ToArray method works in a similar manner. You cannot specify a start-

ing array index position, and you must create the new array in an assignment

statement. Here’s an example:

Stack myStack = new Stack();

for(int i = 0; i > 0; i++)

myStack.Push(i);

object [] myArray = new object[myStack.Count];

myArray = myStack.ToArray();

A Stack Class Example: Decimal to
Multiple-Bases Conversion

Although decimal numbers are used in most business applications, some sci-

entific and technical applications require numbers to be presented in other

bases. Many computer system applications require numbers to be in either

octal or binary format.

One algorithm that we can use to convert numbers from decimal to octal or

binary makes use of a stack. The steps of the algorithm are listed as follows:

Get number

Get base

Loop

Push the number mod base onto the stack

Number becomes the number integer-divided by the base

While number not equal to 0

Once the loop finishes, you have the converted number, and you can simply

pop the individual digits off the stack to see the results. Here’s one implemen-

tation of the program:

using System;

using System.Collections;

namespace csstack

{

class Class1

{

static void Main(string[] args)

The Stack Class 79

{

int num, baseNum;

Console.Write("Enter a decimal number: ");

num = Convert.ToInt32(Console.ReadLine());

Console.Write("Enter a base: ");

baseNum = Convert.ToInt32(Console.ReadLine());

Console.Write(num + " converts to ");

MulBase(num, baseNum);

Console.WriteLine(" Base " + baseNum);

Console.Read();

}

static void MulBase(int n, int b)

{

Stack Digits = new Stack();

do

{

Digits.Push(n % b);

n /= b;

} while (n != 0);

while (Digits.Count > 0)

Console.Write(Digits.Pop());

}

}

}

This program illustrates why a stack is a useful data structure for many

computational problems. When we convert a decimal number to another

form, we start with the right-most digits and work our way to the left. Pushing

each digit on the stack as we go works perfectly because when we finish, the

converted digits are in the correct order.

Although a stack is a useful data structure, some applications lend them-

selves to being modeled using another list-based data structure. Take, for

example, the lines that form at the grocery store or your local video rental

store. Unlike a stack, where the last one in is the first one out, in these lines

the first one in should be the last one out (FIFO). Another example is the

list of print jobs sent to a network (or local) printer. The first job sent to the

printer should be the first job handled by the printer. These examples are

modeled using a list-based data structure called a queue, which is the subject

of the next section.

80 STACKS AND QUEUES

A A arrives in queue

A B

B C

B arrives in queue

A

C

C arrives in queue

B A departs from queue

C B departs from queue

FIGURE 5.2. Queue Operations.

QUEUES, THE QUEUE CLASS AND A QUEUE CLASS IMPLEMENTATION

A queue is a data structure where data enters at the rear of a list and is removed

from the front of the list. Queues are used to store items in the order in which

they occur. Queues are an example of a first-in, first-out (FIFO) data structure.

Queues are used to order processes submitted to an operating system or a print

spooler, and simulation applications use queues to model customers waiting

in a line.

Queue Operations

The two primary operations involving queues are adding a new item to the

queue and removing an item from the queue. The operation for adding a new

item is called Enqueue, and the operation for removing an item from a queue is

called Dequeue. The Enqueue operation adds an item at the end of the queue

and the Dequeue operation removes an item from the front (or beginning) of

the queue. Figure 5.2 illustrates these operations.

The other primary operation to perform on a queue is viewing the beginning

item. The Peek method, like its counterpoint in the Stack class, is used to view

the beginning item. This method simply returns the item without actually

removing it from the queue.

There are other properties of the Queue class we can use to aid in our

programming. However, before we discuss them let’s look at how we can

implement a Queue class.

Queues, the Queue Class and a Queue Class Implementation 81

A Queue Implementation

Implementing the Queue class using an ArrayList is practically a no-brainer,

as was our implementation of the Stack class. ArrayLists are excellent imple-

mentation choices for these types of data structures because of their built-in

dynamics. When we need to insert an item into our queue, the Arraylist Add

method places the item in the next free element of the list. When we need to

remove the front item from the queue, the ArrayList moves each remaining

item in the list up one element. We don’t have to maintain a placeholder,

which can lead to subtle errors in your code.

The following Queue class implementation includes methods for EnQueue,

DeQueue, ClearQueue (clearing the queue), Peek, and Count, as well as a

default constructor for the class:

public class CQueue

{

private ArrayList pqueue;

public CQueue()

{

pqueue = new ArrayList();

}

public void EnQueue(object item)

{

pqueue.Add(item);

}

public void DeQueue()

{

pqueue.RemoveAt(0);

}

public object Peek()

{

return pqueue[0];

}

public void ClearQueue()

{

pqueue.Clear();

}

82 STACKS AND QUEUES

public int Count()

{

return pqueue.Count;

}

}

The Queue Class: A Sample Application

We’ve already mentioned the primary methods found in the Queue class and

seen how to use them in our Queue class implementation. We can explore

these methods further by looking at a particular programming problem that

uses a Queue as its basic data structure. First, though, we need to mention a

few of the basic properties of Queue objects.

When a new Queue object is instantiated, the default capacity of the queue

is 32 items. By definition, when the queue is full, it is increased by a growth

factor of 2.0. This means that when a queue is initially filled to capacity, its new

capacity becomes 64. You are not limited to these numbers however. You can

specify a different initial capacity when you instantiate a queue. Here’s how:

Queue myQueue = new Queue(100);

This sets the queue’s capacity to 100 items. You can change the growth

factor as well. It is the second argument passed to the constructor, as in:

Queue myQueue = new Queue(32, 3);

A generic Queue is instantiated like this:

Queue<int> numbers = new Queue<int>();

This line specifies a growth rate of 3 with the default initial capacity. You have

to specify the capacity even if it’s the same as the default capacity since the

constructor is looking for a method with a different signature.

As we mentioned earlier, queues are often used to simulate situations where

people have to wait in line. One scenario we can simulate with a queue is the

annual Single’s Night dance at the Elks Lodge. Men and women enter the lodge

and stand in line. The dance floor is quite small and there is room for only

Queues, the Queue Class and a Queue Class Implementation 83

three couples at a time. As there is room on the dance floor, dance partners are

chosen by taking the first man and woman in line. These couples are taken

out of the queue and the next set of men and women are moved to the front

of the queue.

As this action takes place, the program announces the first set of dance

partners and who the next people are in line. If there is not a complete couple,

the next person in line is announced. If no one is left in line, this fact is

displayed.

First, let’s look at the data we use for the simulation:

F Jennifer Ingram

M Frank Opitz

M Terrill Beckerman

M Mike Dahly

F Beata Lovelace

M Raymond Williams

F Shirley Yaw

M Don Gundolf

F Bernica Tackett

M David Durr

M Mike McMillan

F Nikki Feldman

We use a structure to represent each dancer. Two simple String class methods

(Chars and Substring) are used to build a dancer. Now here’s the program:

using System;

using System.Collections;

using System.IO;

namespace csqueue

{

public struct Dancer

{

public string name;

public string sex;

public void GetName(string n)

{

name = n;

}

84 STACKS AND QUEUES

public override string ToString()

{

return name;

}

}

class Class1

{

static void newDancers(Queue male, Queue female)

{

Dancer m, w;

m = new Dancer();

w = new Dancer();

if (male.Count > 0 && female.Count > 0)

{

m.GetName(male.Dequeue ().ToString());

w.GetName(female.Dequeue().ToString());

}

else if ((male.Count > 0) && (female.Count ==

0))

Console.WriteLine("Waiting on a female

dancer.");

else if ((female.Count > 0) && (male.Count ==

0))

Console.WriteLine("Waiting on a male

dancer.");

}

static void headOfLine(Queue male, Queue female)

{

Dancer w, m;

m = new Dancer();

w = new Dancer();

if (male.Count > 0)

m.GetName(male.Peek().ToString());

if (female.Count > 0)

w.GetName(female.Peek().ToString());

if (m.name ! = " " && w.name ! = "")

Console.WriteLine("Next in line are: " +

Queues, the Queue Class and a Queue Class Implementation 85

m.name + "\t"

+ w.name);

else

if (m.name ! = "")

Console.WriteLine("Next in line is: " +

m.name);

else

Console.WriteLine("Next in line is: " +

w.name);

}

static void startDancing(Queue male, Queue female)

{

Dancer m, w;

m = new Dancer();

w = new Dancer();

Console.WriteLine("Dance partners are: ");

Console.WriteLine();

for(int count = 0; count <= 3; count++)

{

m.GetName(male.Dequeue().ToString());

w.GetName(female.Dequeue().ToString());

Console.WriteLine(w.name + "\t" + m.name);

}

}

static void formLines(Queue male, Queue female)

{

Dancer d = new Dancer();

StreamReader inFile;

inFile = File.OpenText("c:\\dancers.dat");

string line;

while(inFile.Peek() ! = -1)

{

line = inFile.ReadLine();

d.sex = line.Substring(0,1);

d.name = line.Substring(2, line.Length -2);

if (d.sex == "M")

male.Enqueue(d);

else

86 STACKS AND QUEUES

female.Enqueue(d);

}

}

static void Main(string[] args)

{

Queue males = new Queue();

Queue females = new Queue();

formLines(males, females);

startDancing(males, females);

if (males.Count > 0 || females.Count > 0)

headOfLine(males, females);

newDancers(males, females);

if (males.Count > 0 || females.Count > 0)

headOfLine(males, females);

newDancers(males, females);

Console.Write("press enter");

Console.Read();

}

}

}

Here’s the output from a sample run using the data shown:

Sorting Data With Queues

Another application for queues is sorting data. Back in the old days of com-

puting, programs were entered into a mainframe computer via punch cards,

where each card held a single program statement. Cards were sorted using a

Queues, the Queue Class and a Queue Class Implementation 87

mechanical sorter that utilized bin-like structures. We can simulate this pro-

cess by sorting data using queues. This sorting technique is called a radix sort.

It will not be the fastest sort in your programming repertoire, but the radix

sort does demonstrate another interesting use of queues.

The radix sort works by making two passes over a set of data, in this case

integers in the range 0–99. The first pass sorts the numbers based on the 1’s

digit and the second pass sorts the numbers based on the 10’s digit. Each

number is then placed in a bin based on the digit in each of these places.

Given these numbers:

91 46 85 15 92 35 31 22

The first pass results in this bin configuration:

Bin 0:

Bin 1: 91 31

Bin 2: 92 22

Bin 3:

Bin 4:

Bin 5: 85 15 35

Bin 6: 46

Bin 7:

Bin 8:

Bin 9:

Now put the numbers in order based on which bin they’re in:

91 31 92 22 85 15 35 46

Next, take the list and sort by the 10’s digit into the appropriate bins:

Bin 0:

Bin 1: 15

Bin 2: 22

Bin 3: 31 35

Bin 4: 46

Bin 5:

Bin 6:

Bin 7:

Bin 8: 85

Bin 9: 91 92

88 STACKS AND QUEUES

Take the numbers from the bins and put them back into a list, which results

in a sorted set of integers:

15 22 31 35 46 85 91 92

We can implement this algorithm by using queues to represent the bins.

We need nine queues, one for each digit. We use modulus and integer division

for determining the 1’s and 10’s digits. The rest is a matter of adding numbers

to their appropriate queues, taking them out of the queues to resort based on

the 1’s digit, and then repeating the process for the 10’s digit. The result is a

sorted list of integers.

Here’s the code:

using System;

using System.Collections;

using System.IO;

namespace csqueue

{

class Class1

{

enum DigitType {ones = 1, tens = 10}

static void DisplayArray(int [] n)

{

for(int x = 0; x <= n.GetUpperBound(0); x++)

Console.Write(n[x] + " ");

}

static void RSort(Queue[] que, int[] n, DigitType

digit)

{

int snum;

for(int x = 0; x <= n.GetUpperBound(0); x++)

{

if (digit == DigitType.ones)

snum = n[x] % 10;

else

snum = n[x] / 10;

que[snum].Enqueue(n[x]);

Queues, the Queue Class and a Queue Class Implementation 89

}

}

static void BuildArray(Queue[] que, int[] n)

{

int y = 0;

for(int x = 0; x >= 9; x++)

while(que[x].Count > 0)

{

n[y] =

Int32.Parse(que[x].Dequeue().ToString());

y++;

}

}

static void Main(string[] args)

{

Queue [] numQueue = new Queue[10];

int [] nums = new int[]

{91, 46, 85, 15, 92, 35, 31, 22};

int[] random = new Int32[99];

// Display original list

for(int i = 0; i < 10; i++)

numQueue[i] = new Queue();

RSort(numQueue, nums, DigitType.ones);

//numQueue, nums, 1

BuildArray(numQueue, nums);

Console.WriteLine();

Console.WriteLine("First pass results: ");

DisplayArray(nums);

// Second pass sort

RSort(numQueue, nums, DigitType.tens);

BuildArray(numQueue, nums);

Console.WriteLine();

Console.WriteLine("Second pass results: ");

// Display final results

DisplayArray(nums);

Console.WriteLine();

90 STACKS AND QUEUES

Console.Write("Press enter to quit");

Console.Read();

}

}

}

The RSort subroutine is passed the array of queues, the number array, and

a descriptor telling the subroutine whether to sort the 1’s digit or the 10’s

digit. If the sort is on the 1’s digit, the program calculates the digit by taking

the remainder of the number modulus 10. If the sort is on the 10’s digit,

the program calculates the digit by taking the number and dividing (in an

integer-based manner) by 10.

To rebuild the list of numbers, each queue is emptied by performing succes-

sive Dequeue operations while there are items in the queue. This is performed

in the BuildArray subroutine. Since we start with the array that is holding the

smallest numbers, the number list is built “in order.”

Priority Queues: Deriving From the Queue Class

As you know now, a queue is a data structure where the first item placed in the

structure is the first item taken out of the structure. The effect of the behavior

is the oldest item in the structure that is removed first. For many applications,

though, a data structure is needed where an item with the highest priority is

removed first, even if it isn’t the “oldest” item in the structure. There is a special

case of the Queue made for this type of application—the priority queue.

There are many applications that utilize priority queues in their operations.

A good example is process handling in a computer operating system. Certain

processes have a higher priority than other processes, such as printing pro-

cesses, which typically have a low priority. Processes (or tasks) are usually

numbered by their priority, with a Priority 0 process having a higher priority

than a Priority 20 task.

Items stored in a priority queue are normally constructed as key–value

pairs, where the key is the priority level and the value identifies the item. For

example, an operating system process might be defined like this:

struct Process {

int priority;

string name;

}

Queues, the Queue Class and a Queue Class Implementation 91

We cannot use an unmodified Queue object for a priority queue. The

DeQueue method simply removes the first item in the queue when it is called.

We can, though, derive our own priority queue class from the Queue class,

overriding Dequeue to make it do our bidding.

We’ll call the class PQueue. We can use all of the Queue methods as is,

and override the Dequeue method to remove the item that has the high-

est priority. To remove an item from a queue that is not at the front of

the queue, we have to first write the queue items to an array. Then we

can iterate through the array to find the highest priority item. Finally,

with that item marked, we can rebuild the queue, leaving out the marked

item.

Here’s the code for the PQueue class:

public struct pqItem {

public int priority;

public string name;

}

public class PQueue : Queue {

public PQueue {

base();

}

public override object Dequeue() {

object [] items;

int x, min, minindex;

items = this.ToArray();

min = (pqItem)items[0].priority;

for(int x = 1; x <= items.GetUpperbound(0); x++)

if ((pqItem)items[x].Priority < min) {

min = (pqItem)items[x].Priority;

minindex = x;

}

this.Clear();

for(int x = 0; x <= items.GetUpperBound(0); x++)

if (x != minindex && (pqItem)items[x].name != "")

this.Enqueue(items[x]);

return items[minindex];

}

}

92 STACKS AND QUEUES

The following code demonstrates a simple use of the PQueue class. An

emergency waiting room assigns a priority to patients who come in for

treatment. A patient presenting symptoms of a heart attack is going to be

treated before a patient who has a bad cut. The following program simulates

three patients entering an emergency room at approximately the same time.

Each patient is seen by the triage nurse, assigned a priority, and added to the

queue. The first patient to be treated is the patient removed from the queue

by the Dequeue method.

static void Main() {

PQueue erwait = new PQueue();

pqItem[] erPatient = new pqItem[4];

pqItem nextPatient;

erPatient[0].name = "Joe Smith";

erPatient[0].priority = 1;

erPatient[1].name = "Mary Brown";

erPatient[1].priority = 0;

erPatient[2].name = "Sam Jones";

erPatient[2].priority = 3;

for(int x = 0; x <= erPatient.GetUpperbound(0); x++)

erwait.Enqueue(erPatient[x]);

nextPatient = erwait.Dequeue();

Console.WriteLine(nextPatient.name);

}

The output of this program is “Mary Brown”, since she has a higher priority

than the other patients.

SUMMARY

Learning to use data structures appropriately and efficiently is one of the

skills that separates the expert programmer from the average programmer.

The expert programmer recognizes that organizing a program’s data into an

appropriate data structure makes it easier to work with the data. In fact,

thinking through a computer programming problem using data abstraction

makes it easier to come up with a good solution to the problem in the first

place.

We discussed using two very common data structures in this chapter:

the stack and the queue. Stacks are used for solving many different types

Exercises 93

of problems in computer programming, especially in systems’ programming

areas such as interpreters and compilers. We also saw how we can use stacks

to solve more generic problems, such as determining if a word is a palindrome.

Queues also have many applications. Operating systems use queues for

ordering processes (via priority queues) and queues are used quite often for

simulating real world processes. Finally, we used the Queue class to derive a

class for implementing a priority queue. The ability to derive new classes from

classes in the .NET Framework class library is one of the major strengths of

the .NET version of C#.

EXERCISES

1. You can use a Stack to check if a programming statement or a formula

has balanced parentheses. Write a Windows application that provides a

text box for the user to enter an expression with parenthesis. Provide a

Check Parens button that, when clicked, runs a program that checks the

number of parentheses in the expression and highlights a parenthesis that

is unbalanced.

2. A postfix expression evaluator works on arithmetic statements that take

this form: op1 op2 operator . . . Using two stacks, one for the operands

and one for the operators, design and implement a Calculator class that

converts infix expressions to postfix expressions and then uses the stacks

to evaluate the expressions.

3. This exercise involves designing a help-desk priority manager. Help

requests are stored in a text file with the following structure: priority, id

of requesting party, time of request The priority is an integer in the range

1–5 with 1 being the least important and 5 being the most important.

The id is a four-digit employee identification number and the time is in

TimeSpan.Hours, TimeSpan.Minutes, TimeSpan.Seconds format. Write a

Windows application that, during the Form˙Load event, reads five records

from the data file containing help requests, prioritizes the list using a pri-

ority queue, and displays the list in a list box. Each time a job is completed,

the user can click on the job in the list box to remove it. When all five jobs

are completed, the application should automatically read five more data

records, prioritize them, and display them in the list box.

CHAPTER 6

The BitArray Class

The BitArray class is used to represent sets of bits in a compact fashion. Bit

sets can be stored in regular arrays, but we can create more efficient programs

if we use data structures specifically designed for bit sets. In this chapter, we’ll

look at how to use this data structure and examine some problems that can

be solved using sets of bits. The chapter also includes a review of the binary

numbers, the bitwise operators, and the bitshift operators.

A MOTIVATING PROBLEM

Let’s look at a problem we will eventually solve using the BitArray class. The

problem involves finding prime numbers. An ancient method, discovered

by the third-century B.C. Greek philosopher Eratosthenes, is called the sieve

of Eratosthenes. This method involves filtering numbers that are multiples

of other numbers, until the only numbers left are primes. For example, let’s

determine the prime numbers in the set of the first 100 integers. We start with

2, which is the first prime. We move through the set removing all numbers

that are multiples of 2. Then we move to 3, which is the next prime. We move

through the set again, removing all numbers that are multiples of 3. Then we

move to 5, and so on. When we are finished, all that will be left are prime

numbers.

94

A Motivating Problem 95

We’ll first solve this problem using a regular array. The approach we’ll use,

which is similar to how we’ll solve the problem using a BitArray, is to initialize

an array of 100 elements, with each element set to the value 1. Starting with

index 2 (since 2 is the first prime), each subsequent array index is checked

to see first if its value is 1 or 0. If the value is 1, then it is checked to see if it

is a multiple of 2. If it is, the value at that index is set to 0. Then we move to

index 3, do the same thing, and so on.

To write the code to solve this problem, we’ll use the CArray class developed

earlier. The first thing we need to do is create a method that performs the sieve.

Here’s the code:

public void GenPrimes() {

int temp;

for(int outer = 2; outer <= arr.GetUpperBound(0);

outer++)

for(int inner = outer+1; inner <= GetUpperBound(0);

inner++)

if (arr[inner] == 1)

if ((inner % outer) == 0)

arr[inner] = 0;

}

Now all we need is a method to display the primes:

public void ShowPrimes() {

for(int i = 2; i <= arr.GetUpperBound(0); i++)

if (arr[i] == 1)

Console.Write(i + " ");

}

And here’s a program to test our code:

static void Main() {

int size = 100;

CArray primes = new CArray(size-1);

for(int i = 0; i <= size-1; i++)

primes.Insert(1);

primes.GenPrimes();

primes.ShowPrimes();

}

96 THE BITARRAY CLASS

This code demonstrates how to use the sieve of Eratosthenes using integers

in the array, but it suggests that a solution can be developed using bits, since

each element in the array is a 0 or a 1. Later in the chapter we’ll examine how

to use the BitArray class, both to implement the sieve of Eratosthenes and for

other problems that lend themselves to sets of bits.

BITS AND BIT MANIPULATION

Before we look at the BitArray class, we need to discuss how bits are used

in VB.NET, since working at the bit level is not something most VB.NET

programmers are familiar with. In this section, we’ll examine how bits are

manipulated in VB.NET, primarily by looking at how to use the bitwise oper-

ators to manipulate Byte values.

The Binary Number System

Before we look at how to manipulate Byte values, let’s review a little about

the binary system. Binary numbers are strings of 0s and 1s that represent base

10 (or decimal) numbers in base 2. For example, the binary number for the

integer 0 is:

00000000

whereas the binary number for the integer 1 is:

00000001

Here are the integers 0–9 displayed in binary:

00000000—0d (where d signifies a decimal number)

00000001—1d

00000010—2d

00000011—3d

00000100—4d

00000101—5d

00000110—6d

00000111—7d

00001000—8d

00001001—9d

Bits and Bit Manipulation 97

The best way to convert a binary number to its decimal equivalent is to

use the following scheme. Each binary digit, starting with the rightmost digit,

represents a successively larger power of 2. If the digit in the first place is a

1, then that represents 2◦. If the second position has a 1, that represents 2 1,

and so on.

The binary number:

00101010

is equivalent to:

0 + 21 + 0 + 23 + 0 + 25 + 0 + 0 =

0 + 2 + 0 + 8 + 0 + 32 + 0 + 0 = 42

Bits are usually displayed in sets of eight bits, which makes a byte. The

largest number we can express in eight bits is 255, which in binary is:

11111111

or

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255

A number greater than 255 must be stored in 16 bits. For example, the binary

number representing 256 is:

00000001 00000000

It is customary, though not required, to separate the lower eight bits from the

upper eight bits.

Manipulating Binary Numbers: The Bitwise
and Bit-shift Operators

Binary numbers are not operated on using the standard arithmetic operators.

You have to use the bitwise operators (And, Or, Not) or the bit-shift operators

(<<, >>, and >>>). In this section, we explain how these operators work and

demonstrate in later sections their use via VB.NET applications.

98 THE BITARRAY CLASS

First, we’ll examine the bitwise operators. These are the logical operators

most programmers are already familiar with—they are used to combine rela-

tional expressions in order to compute a single Boolean value. With binary

numbers, the bitwise operators are used to compare two binary numbers bit

by bit, yielding a new binary number.

The bitwise operators work the same way they do with Boolean values.

When working with binary numbers, a True bit is equivalent to 1 and a False

bit is equivalent to 0. To determine how the bitwise operators work on bits,

then, we can use truth tables just as we would with Boolean values. The first

two columns in a row are the two operands and the third column is the result

of the operation. The truth table (in Boolean) for the And operator is:

True True True

True False False

False True False

False False False

The equivalent table for bit values is:

1 1 1

1 0 0

0 1 0

0 0 0

The Boolean truth table for the Or operator is:

True True True

True False True

False True True

False False False

The equivalent table for bit values is:

1 1 1

1 0 1

0 1 1

0 0 0

A Bitwise Operator Application 99

Finally, there is the Xor operator. This is the least known of the bitwise

operators because it is not used in logical operations performed by com-

puter programs. When two bits are compared using the Xor operator, the

result bit is a 1 if exactly one bit of the two operands is 1. Here is the

table:

1 1 0

1 0 1

0 1 1

0 0 0

With these tables in mind, we can combine binary numbers with these

operators to yield new binary numbers. Here are some examples:

00000001 And 00000000 -> 00000000

00000001 And 00000001 -> 00000001

00000010 And 00000001 -> 00000000

00000000 Or 00000001 -> 00000001

00000001 Or 00000000 -> 00000001

00000010 Or 00000001 -> 00000011

00000000 Xor 00000001 -> 00000001

00000001 Xor 00000000 -> 00000001

00000001 Xor 00000001 -> 00000000

Now let’s look at a VB.NET Windows application that better shows how

the bitwise operators work.

A BITWISE OPERATOR APPLICATION

We can demonstrate how the bitwise operators work in C# using a Win-

dows application that applies these operators to a pair of values. We’ll use

the ConvertBits method developed earlier to help us work with the bitwise

operators.

100 THE BITARRAY CLASS

First, let’s look at the user interface for the application, which goes a long

way to explaining how the application works:

Two integer values are entered and the user selects one of the bitwise

operator buttons. The bits that make up each integer value are displayed

along with the bit string resulting from the bitwise operation. Here is one

example, ANDing the values 1 and 2:

A Bitwise Operator Application 101

Here is the result of ORing the same two values:

Here is the code for the operation:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.Button btnAdd;

private System.Windows.Forms.Button btnClear;

private System.Windows.Forms.Button btnOr;

private System.Windows.Forms.Button btnXor;

private System.Forms.Label lblInt1Bits;

private System.Forms.Label lblInt2Bits;

private System.Forms.TextBox txtInt1;

private System.Forms.TextBox txtInt2;

// other Windows app code here

private void btnAdd_Click(object sender,_

System. EventArgs e)

102 THE BITARRAY CLASS

{

int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

}

private StringBuilder ConvertBits(int val)

{

int dispMask = 1 << 31;

StringBuilder bitBuffer = new StringBuilder(35);

for(int i = 1; i <= 32; i++) {

if ((val && bitMask) == 0)

bitBuffer.Append("0");

else

bitBuffer.Append("1");

val <<= 1;

if ((i % 8) == 0)

bitBuffer.Append(" ");

}

return bitBuffer;

}

private void btnClear_Click(object sender,_

System. Eventargs e)

{

txtInt1.Text = "";

txtInt2.Text = "";

lblInt1Bits.Text = "";

lblInt2Bits.Text = "";

lblBitResult.Text = "";

txtInt1.Focus();

}

private void btnOr_Click(object sender,_

System.EventsArgs e)

{

int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

A Bitwise Operator Application 103

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

lblBitResult.Text = ConvertBits(val1 ||

val2).ToString();

}

private void btnXOr_Click(object sender,_

System.EventsArgs e)

{

int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

lblBitResult.Text = ConvertBits(val1 ^ val2).

ToString();

}

}

The BitShift Operators

A binary number consists only of 0s and 1s, with each position in the number

representing either the quantity 0 or a power of 2. There are three operators

you can use in C# to change the position of bits in a binary number. They are:

the left shift operator (<<) and the right shift operator (>>).

Each of these operators takes two operators: a value (left) and the number

of bits to shift (right). For example, if we write:

1 << 1

the result is 00000010. And we can reverse that result by writing 2 >> 1.

Let’s look at a more complex example. The binary number representing the

quantity 3 is:

00000011

If we write 3 << 1, the result is:

00000110

104 THE BITARRAY CLASS

And if we write 3 << 2, the result is:

00001100

The right shift operator works exactly in reverse of the left shift operator.

For example, if we write:

3 >> 1

the result is 00000001.

In a later section, we’ll see how to write a Windows application that demon-

strates the use of the bit shift operators.

AN INTEGER-TO-BINARY CONVERTER APPLICATION

In this section, we demonstrate how to use a few of the bitwise operators

to determine the bit pattern of an integer value. The user enters an integer

and presses the Display Bits button. The integer value converted to binary is

displayed in four groups of eight bits in a label.

The key tool we use to convert an integer into a binary number is a mask.

The conversion function uses the mask to hide some of the bits in a number

while displaying others. When the mask and the integer value (the operands)

are combined with the AND operator, the result is a binary string representing

the integer value.

First, let’s look at several integer values and their representative binary

values:

An Integer-to-Binary Converter Application 105

Binary representation of negative integers in computers is not always so

straightforward, as shown by this example. For more information, consult

a good book on assembly language and computer organization.

As you can see, this last value, 65535, is the largest amount that can fit into

16 bits. If we increase the value to 65536, we get the following:

Finally, let’s look at what happens when we convert the largest number we

can store in an integer variable in C#:

If we try to enter value 2147483648, we get an error. You may think that the

leftmost bit position is available, but it’s not because that bit is used to work

with negative numbers.

106 THE BITARRAY CLASS

Now let’s examine the code that drives this application. We’ll display the

listing first and then explain how the program works:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

{

// Windows generated code omitted here

private void btnOr_Click(object sender,

System.EventsArgs e)

{

int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

lblBitResult.Text = ConvertBits(val1 || val2).

ToString();

}

private StringBuilder ConvertBits(int val)

{

int dispMask = 1 << 31;

StringBuilder bitBuffer = new StringBuilder(35);

for(int i = 1; i <= 32; i++) {

if ((val && bitMask) == 0)

bitBuffer.Append("0");

else

bitBuffer.Append("1");

val <<= 1;

if ((i % 8) == 0)

bitBuffer.Append(" ");

}

return bitBuffer;

}

}

A Bit Shift Demonstration Application 107

Most of the work of the application is performed in the ConvertBits func-

tion. The variable dispMask holds the bit mask and the variable bitBuffer holds

the string of bits built by the function. bitBuffer is declared as a StringBuilder

type in order to allow us to use the class’s Append method to build the string

without using concatenation.

The binary string is built in the For loop, which is iterated 32 times since

we are building a 32-bit string. To build the bit string, we AND the value with

the bit mask. If the result of the operation is 0, a 0 is appended to the string.

If the result is 1, a 1 is appended to the string. We then perform a left bit shift

on the value in order to then compute the next bit in the string. Finally, after

every eight bits, we append a space to the string in order to separate the four

8-bit substrings, making them easier to read.

A BIT SHIFT DEMONSTRATION APPLICATION

This section discusses a Windows application that demonstrates how the

bit-shifting operators work. The application provides text boxes for the two

operands (a value to shift and the number of bits to shift), as well as two

labels that are used to show both the original binary representation of the left

operand and the resulting bits that result from a bit shifting operation. The

application has two buttons that indicate a left shift or a right shift, as well as

a Clear and an Exit button.

Here’s the code for the program:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

{

// Windows generated code omitted

private StringBuilder ConvertBits(int val)

{

int dispMask = 1 << 31;

StringBuilder bitBuffer = new StringBuilder(35);

108 THE BITARRAY CLASS

for(int i = 1; i <= 32; i++) {

if ((val && bitMask) == 0)

bitBuffer.Append("0");

else

bitBuffer.Append("1");

val <<= 1;

if ((i % 8) == 0)

bitBuffer.Append(" ");

}

return bitBuffer;

}

private void btnOr_Click(object sender,

System.EventsArgs e)

{

txtInt1.Text = "";

txtBitShift.Text = "";

lblInt1Bits.Text = "";

lblOrigBits.Text = "";

txtInt1.Focus();

}

private void btnLeft_Click(object sender,

System.EventsArgs e)

{

int value = Int32.Parse(txtInt1.Text);

lblOrigBits.Text = ConvertBits(value).ToString();

value <<= Int32.Parse(txtBitShift.Text);

lblInt1Bits.Text = ConvertBits(value).ToString();

}

private void btnRight_Click(object sender,

System.EventsArgs e)

{

int value = Int32.Parse(txtInt1.Text);

lblOrigBits.Text = ConvertBits(value).ToString();

value >>= Int32.Parse(txtBitShift.Text);

lblInt1Bits.Text = ConvertBits(value).ToString();

}

}

A Bit Shift Demonstration Application 109

Following are some examples of the application in action.

Here is 4 << 2:

Here is 256 >> 8:

110 THE BITARRAY CLASS

THE BITARRAY CLASS

The BitArray class is used to work with sets of bits. A bit set is used to efficiently

represent a set of Boolean values. A BitArray is very similar to an ArrayList, in

that BitArrays can be resized dynamically, adding bits when needed without

worrying about going beyond the upper bound of the array.

Using the BitArray Class

A BitArray is created by instantiating a BitArray object, passing the number

of bits you want in the array into the constructor:

BitArray BitSet = new BitArray(32);

The 32 bits of this BitArray are set to False. If we wanted them to be True, we

could instantiate the array like this:

BitArray BitSet = new BitArray(32, True);

The constructor can be overloaded many different ways, but we’ll look at

just one more constructor method here. You can instantiate a BitArray using

an array of Byte values. For example:

byte[] ByteSet = new byte[] {1, 2, 3, 4, 5};

BitArray BitSet = new BitArray(ByteSet);

The BitSet BitArray now contains the bits for the byte values 1, 2, 3, 4, and 5.

Bits are stored in a BitArray with the most significant bit in the leftmost

(index 0) position. This can be confusing to read when you are accustomed to

reading binary numbers from right to left. For example, here are the contents

of an eight-bit BitArray that is equal to the number 1:

True False False False False False False False

Of course, we are more accustomed to viewing a binary number with the

most significant bit to the right, as in:

0 0 0 0 0 0 0 1

The BitArray Class 111

We will have to write our own code to change both the display of bit values

(rather than Boolean values) and the order of the bits.

If you have Byte values in the BitArray, each bit of each Byte value will

display when you loop through the array. Here is a simple program fragment

to loop through a BitArray of Byte values:

byte[] ByteSet = new byte[] {1, 2, 3, 4, 5};

BitArray BitSet = new BitArray(ByteSet);

for (int bits = 0; bits <= bitSet.Count-1; bits++)

Console.Write(BitSet.Get(bits) + " ");

Here is the output:

This output is next to impossible to read and it doesn’t really reflect what is

stored in the array. We’ll see later how to make this type of BitArray easier to

understand. First, though, we need to see how to retrieve a bit value from a

BitArray.

The individual bits stored in a BitArray are retrieved using the Get method.

This method takes an Integer argument, the index of the value wished to be

retrieved, and the return value is a bit value represented by True or False. The

Get method is used in the preceding code segment to display the bit values

from the BitSet BitArray.

If the data we are storing in a BitArray are actually binary values (that

is, values that should be shown as 0s and 1s), we need a way to display

the actual 1s and 0s of the values in the proper order—starting at the

right rather than the left. Although we can’t change the internal code the

BitArray class uses, we can write external code that gives us the output we

want.

112 THE BITARRAY CLASS

The following program creates a BitArray of five Byte values (1,2,3,4,5) and

displays each byte in its proper binary form:

using System;

class chapter6 {

static void Main() {

int bits;

string[] binNumber = new string[8];

int binary;

byte[] ByteSet = new byte[] {1,2,3,4,5};

BitArray BitSet = new BitArray(ByteSet);

bits = 0;

binary = 7;

for(int i = 0; i <= BitSet.Count-1; i++) {

if (BitSet.Get(i) == true)

binNumber[binary] = "1";

else

binNumber[binary] = "0";

bits++;

binary--;

if ((bits % 8) == 0) {

binary = 7;

bits = 0;

for(int i = 0; i <= 7; i++)

Console.Write(binNumber[i]);

}

}

}

}

Here is the output:

The BitArray Class 113

There are two arrays used in this program. The first array, BitSet, is a BitArray

that holds the Byte values (in bit form). The second array, binNumber, is just

a string array that is used to store a binary string. This binary string will be

built from the bits of each Byte value, starting at the last position (7) and

moving forward to the first position (0).

Each time a bit value is encountered, it is first converted to 1 (if True) or 0

(if False) and then placed in the proper position. Two variables are used to tell

where we are in the BitSet array (bits) and in the binNumber array (binary).

We also need to know when we’ve converted eight bits and are finished with

a number. We do this by taking the current bit value (in the variable bits)

modulo 8. If there is no remainder then we’re at the eighth bit and we can

write out a number. Otherwise, we continue in the loop.

We’ve written this program completely in Main(), but in the exercises at

the end of the chapter you’ll get an opportunity to clean the program up by

creating a class or even extending the BitArray class to include this conversion

technique.

More BitArray Class Methods and Properties

In this section, we discuss a few more of the BitArray class methods and

properties you’re most likely to use when working with the class.

The Set method is used to set a particular bit to a value. The method is

used like this:

BitArray.Set(bit, value)

where bit is the index of the bit to set, and value is the Boolean value you wish

to assign to the bit. (Although Boolean values are supposed to be used here,

you can actually use other values, such as 0s and 1s. You’ll see how to do this

in the next section.)

The SetAll method allows you to set all the bits to a value by passing the

value in as the argument, as in BitSet.SetAll(False).

You can perform bitwise operations on all the bits in a pair of BitArrays

using the And, Or, Xor, and Not methods. For example, given that we have

two BitArrays, bitSet1 and bitSet2, we can perform a bitwise Or like this:

bitSet1.Or(bitSet2)

The following expression:

bitSet.Clone()

114 THE BITARRAY CLASS

returns a shallow copy of a BitArray, whereas the expression:

bitSet.CopyTo(arrBits)

copies the contents of the BitArray to a standard array named arrBits.

With this overview, we are now ready to see how we can use a BitArray to

write the Sieve of Eratosthenes.

USING A BITARRAY TO WRITE THE SIEVE OF ERATOSTHENES

At the beginning of the chapter, we showed you how to write a program to

implement the Sieve of Eratosthenes using a standard array. In this section,

we demonstrate the same algorithm, this time using a BitArray to implement

the sieve.

The application we’ve written accepts an integer value from the user, deter-

mines the primacy of the number, and also shows a list of the primes from 1

through 1024. Following are some screen shots of the application:

Using a BitArray To Write the Sieve of Eratosthenes 115

Here is what happens when the number is not prime:

Now let’s look at the code:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

116 THE BITARRAY CLASS

{

// Windows generated code omitted

private void btnPrime_Click(object sender,

System.EventsArgs e)

{

BitArray[] bitSet = new BitArray[1024];

int value = Int32.Parse(txtValue.Text);

BuildSieve(bitSet);

if (bitSet.Get(value))

lblPrime.Text = (value + " is a prime number.");

else

lblPrime.Text = (value + " is not a prime

number.");

}

private void BuildSieve(BitArray bits) {

string primes;

for(int i = 0; i <= bits.Count-1; i++)

bits.Set(i, 1);

int lastBit = Int32.Parse(Math.

Sqrt (bits.Count));

for(int i = 2; i <= lastBit-1; i++)

if (bits.Get(i))

for (int j = 2 ∗ i; j <= bits.Count-1; j++)

bits.Set(j, 0);

int counter = 0;

for (int i = 1; i <= bits.Count-1; i++)

if (bits.Get(i)) {

primes += i.ToString();

counter++;

if ((counter % 7) == 0)

primes += "\n";

else

primes += "\n";

}

txtPrimes.Text = primes;

}

}

Comparison of BitArray Versus Array for Sieve of Eratosthenes 117

The sieve is applied in this loop:

int lastBit = Int32.Parse(Math.Sqrt(bits.Count));

for(int i = 2; i <= lastBit-1; i++)

if (bits.Get(i))

for (int j = 2 ∗ i; j <= bits.Count-1; j++)

bits.Set(j, 0);

The loop works through the multiples of all the numbers up through the

square root of the number of items in the BitArray, eliminating all multiples

of the numbers 2, 3, 4, 5, and so on.

Once the array is built using the sieve, we can then make a simple call to

the BitArray:

bitSet.Get(value)

If the value is found, then the number is prime. If the value is not found, then

it was eliminated by the sieve and the number is not prime.

COMPARISON OF BITARRAY VERSUS ARRAY

FOR SIEVE OF ERATOSTHENES

Using a BitArray class is supposed to be more efficient for problems that

involve Boolean or bit values. Some problems that don’t seem to involve these

types of values can be redesigned so that a BitArray can be used.

When the Sieve of Eratosthenes method is timed using both a BitArray and

a standard array, the BitArray method is consistently faster by a factor of 2.

You will get an opportunity to check these results for yourself in the exercises.

SUMMARY

The BitArray class is used to store sets of bits. Although bits are normally

represented by 0s and 1s, the BitArray class stores its values as True (1) or

False (0) values instead. BitArrays are useful when you need to store a set of

Boolean values, but they are even more useful when you need to work with

118 THE BITARRAY CLASS

bits, since we can easily move back and forth between bit values and Boolean

values.

As is shown in the chapter and one of the exercises, problems that can be

solved using arrays of numbers can be more efficiently solved using arrays

of bits. Although some readers may see this as just fancy (or not so fancy)

programming tricks, the efficiency of storing bit values (or Boolean values)

cannot be denied for certain situations.

EXERCISES

1. Write your own BitArray class (without inheriting from the BitArray class)

that includes a conversion method that takes Boolean values and converts

them to bit values. Hint: use a BitArray as the main data structure of the

class but write your own implementation of the other methods.

2. Reimplement the class in Exercise 1 by inheriting from the BitArray class

and adding just a conversion method.

3. Using one of the BitArray classes designed in Exercises 1 and 2, write a

method that takes an integer value, reverses its bits, and displays the value

in base 10 format.

4. In his excellent book on programming, Programming Pearls (Bentley

2000), Jon Bentley discusses the solution to a programming problem that

involves using a BitArray, although he calls it a bit vector in his book.

Read about the problem at the following web site: http://www.cs.bell-

labs.com/cm/cs/pearls/cto.html and design your own solution to at least

the data storage problem using VB.NET. Of course, you don’t have to use a

file as large as the one used in the book, just pick something that adequately

tests your implementation.

5. Write a program that compares the times for both the BitArray implemen-

tation of the Sieve of Eratosthenes and the standard array implementation.

What are your results?

CHAPTER 7

Strings, the String Class, and
the StringBuilder Class

Strings are common to most computer programs. Certain types of programs,

such as word processors and web applications, make heavy use of strings,

which forces the programmer of such applications to pay special attention

to the efficiency of string processing. In this chapter, we examine how C#

works with strings, how to use the String class, and finally, how to work with

the StringBuilder class. The StringBuilder class is used when a program must

make many changes to a String object because strings and String objects are

immutable, whereas StringBuilder objects are mutable. We’ll explain all this

later in the chapter.

WORKING WITH THE STRING CLASS

A string is a series of characters that can include letters, numbers, and other

symbols. String literals are created in C# by enclosing a series of characters

119

120 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

within a set of double quotation marks. Here are some examples of string

literals:

"David Ruff"

"the quick brown fox jumped over the lazy dog"

"123-45-6789"

"mmcmillan@pulaskitech.edu"

A string can consist of any character that is part of the Unicode character

set. A string can also consist of no characters. This is a special string called the

empty string and it is shown by placing two double quotation marks next to

each other (“ ”). Please keep in mind that this is not the string that represents

a space. That string looks like this—“ ”.

Strings in C# have a schizophrenic nature—they are both native types and

objects of a class. Actually, to be more precise, we should say that we can work

with strings as if they are native data values, but in reality every string created

is an object of String class. We’ll explain later why this is so.

Creating String Objects

Strings are created like this:

string name = "Jennifer Ingram";

though you can of course, declare the variable and assign it data in two separate

statements. The declaration syntax makes name look like it is just a regular

variable, but it is actually an instance of a String object.

C# strings also allow you to place escape characters inside the strings. C

and C++ programmers are familiar with this technique, but it may be new to

someone coming from a VB background. Escape characters are used to place

format characters such as line breaks and tab stops within a string. An escape

character begins with a backslash (\) and is followed by a single letter that

represents the format. For example, \n indicates a newline (line break) and \t

indicates a tab. In the following line, both escape characters are used within

a single string:

string name = "Mike McMillan\nInstructor, CIS\tRoom 306";

Working with the String Class 121

Frequently Used String Class Methods

Although there are many operations you can perform on strings, a small set of

operations dominates. Three of the top operations are as follows: 1. finding a

substring in a string, 2. determining the length of a string, and 3. determining

the position of a character in a string.

The following short program demonstrates how to perform these opera-

tions. A String object is instantiated to the string “Hello world”. We then break

the string into its two constituent pieces: the first word and the second word.

Here’s the code, followed by an explanation of the String methods used:

using System;

class Chapter7

{

static void Main() {

string string1 = "Hello, world!";

int len = string1.Length;

int pos = string1.IndexOf(" ");

string firstWord, secondWord;

firstWord = string1.Substring(0, pos);

secondWord = string1.Substring(pos+1,

(len-1)-(pos+1));

Console.WriteLine("First word: " + firstWord);

Console.WriteLine("Second word: " + secondWord);

Console.Read();

}

}

The first thing we do is use Length property to determine the length of the

object string1. The length is simply the total number of all the characters in

the string. We’ll explain shortly why we need to know the length of the string.

To break up a two-word phrase into separate words, we need to know what

separates the words. In a well-formed phrase, a space separates words and so

we want to find the space between the two words in this phrase. We can do

this with the IndexOf method. This method takes a character and returns the

character’s position in the string. Strings in C# are zero-based and therefore

the first character in the string is at position 0, the second character is at

122 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

position 1, and so on. If the character can’t be found in the string, a −1 is

returned.

The IndexOf method finds the position of the space separating the two

words and is used in the next method, Substring, to actually pull the first

word out of the string. The Substring method takes two arguments: a starting

position and the number of characters to pull. Look at the following example:

string s = "Now is the time";

string sub = s.Substring(0,3);

The value of sub is “Now”. The Substring method will pull as many characters

out of a string as you ask it to, but if you try to go beyond the end of the string,

an exception is thrown.

The first word is pulled out of the string by starting at position 0 and

pulling out pos number of characters. This may seem odd, since pos contains

the position of the space, but because strings are zero-based, this is the correct

number.

The next step is to pull out the second word. Since we know where the space

is, we know that the second word starts at pos+1 (again, we’re assuming we’re

working with a well-formed phrase where each word is separated by exactly

one space). The harder part is deciding exactly how many characters to pull

out, knowing that an exception will be thrown if we try to go beyond the

end of the string. There is a formula of sorts we can use for this calculation.

First, we add 1 to the position where the space was found and then subtract

that value from the length of the string. That will tell the method exactly how

many characters to extract.

Although this short program is interesting, it’s not very useful. What we

really need is a program that will pull out the words out of a well-formed phrase

of any length. There are several different algorithms we can use to do this.

The algorithm we’ll use here contains the following steps:

1. Find the position of the first space in the string.

2. Extract the word.

3. Build a new string starting at the position past the space and continuing

until the end of the string.

4. Look for another space in the new string.

5. If there isn’t another space, extract the word from that position to the end

of the string.

6. Otherwise, loop back to step 2.

Working with the String Class 123

Here is the code we built from this algorithm (each word extracted from the

string is stored in a collection named words):

using System;

class Chapter7 {

static void Main() {

string astring = "Now is the time";

int pos;

string word;

ArrayList words = new ArrayList();

pos = astring.IndexOf(" ");

While (pos > 0) {

word = astring.Substring(0,pos);

words.Add(word);

astring = astring.Substring(pos+1, astring.Length

− (pos + 1));

pos = astring.IndexOf(" ");

if (pos == -1) {

word = astring.Substring(0, asstring.Length);

words.Add(word);

}

Console.Read();

}

}

Of course, if we were going to actually use this algorithm in a program we’d

make it a function and have it return a collection, like this:

using System;

using System.Collections;

class Chapter7 {

static void Main() {

string astring = "now is the time for all good

people ";

ArrayList words = new ArrayList();

words = SplitWords(astring);

124 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

foreach (string word in words)

Console.Write(word + " ");

Console.Read();

}

static ArrayList SplitWords(string astring) {

string[] ws = new string[astring.Length-1];

ArrayList words = new ArrayList();

int pos;

string word;

pos = astring.IndexOf(" ");

while (pos > 0) {

word = astring.Substring(0, pos);

words.Add(word);

astring = astring.Substring(pos+1,

astring.Length-(pos+1));

if (pos == -1) {

word = astring.Substring(0, astring.Length);

words.Add(word);

}

}

return words;

}

}

It turns out, though, that the String class already has a method for splitting a

string into parts (the Split method) as well as a method that can take a data

collection and combine its parts into a string (the Join method). We look at

those methods in the next section.

The Split and Join Methods

Breaking up strings into individual pieces of data is a very common function.

Many programs, from Web applications to everyday office applications, store

data in some type of string format. To simplify the process of breaking up

strings and putting them back together, the String class provides two methods

to use: the Split method for breaking up strings and the Join method for making

a string out of the data stored in an array.

Working with the String Class 125

The Split method takes a string, breaks it into constituent pieces, and puts

those pieces into a String array. The method works by focusing on a separating

character to determine where to break up the string. In the example in the

last section, the SplitWords function always used the space as the separator.

We can specify what separator to look for when using the Split method. In

fact, the separator is the first argument to the method. The argument must

come in the form of a char array, with the first element of the array being the

character used as the delimiter.

Many application programs export data by writing out strings of data sep-

arated by commas. These are called comma-separated value strings or CSVs

for short. Some authors use the term comma-delimited. A comma-delimited

string looks like this:

“Mike, McMillan,3000 W. Scenic,North Little Rock,AR,72118”

Each logical piece of data in this string is separated by a comma. We can put

each of these logical pieces into an array using the Split method like this:

string data = "Mike,McMillan,3000 W. Scenic,North Little

Rock,AR,72118";

string[] sdata;

char[] delimiter = new char[] {','};

sdata = data.Split(delimiter, data.Length);

Now we can access this data using standard array techniques:

foreach (string word in sdata)

Console.Write(word + " ");

There is one more parameter we can pass to the Split method—the number

of elements we want to store in the array. For example, if I want to put the

first string element in the first position of the array and the rest of the string

in the second element, I would call the method like this:

sdata = data.Split(delimiter,2);

The elements in the array are

0th element—Mike

1st element—McMillan,3000 W. Scenic,North Little Rock,AR,72118

126 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

We can go the other way, from an array to a string, using the Join method.

This method takes two arguments:the original array and a character to separate

the elements. A string is built consisting of each array element followed by the

separator element. We should also mention that this method is often called as

a class method, meaning we call the method from the String class itself and

not from a String instance.

Here’s an example using the same data we used for the Split method:

using System;

class Chapter7 {

static void Main() {

string data = "Mike,McMillan,3000 W. Scenic,North

Little Rock,AR,72118";

string[] sdata;

char[] delimiter = new char[] {','};

sdata = data.Split(delimiter, data.Length);

foreach (string word in sdata)

Console.Write(word + " ");

string joined;

joined = String.Join(',', sdata);

Console.Write(joined);

}

}

string2 now looks exactly like string1.

These methods are useful for getting data into your program from another

source (the Split method) and sending data out of your program to another

source (the Join method).

Methods for Comparing Strings

There are several ways to compare String objects in C#. The most obvious

ways are to use the relational operators, which for most situations will work

just fine. However, there are situations where other comparison techniques

are more useful, such as if we want to know if a string is greater than, less

Working with the String Class 127

than, or equal to another string, and for situations like that we have to use

methods found in the String class.

Strings are compared with each other much as we compare numbers. How-

ever, since it’s not obvious if “a” is greater than or less than “H”, we have to

have some sort of numeric scale to use. That scale is the Unicode table. Each

character (actually every symbol) has a Unicode value, which the operating

system uses to convert a character’s binary representation to that character.

You can determine a character’s Unicode value by using the ASC function.

ASC actually refers to the ASCII code of a number. ASCII is an older numeric

code that precedes Unicode, and the ASC function was first developed before

Unicode subsumed ASCII.

To find the ASCII value for a character, simply convert the character to an

integer using a cast, like this:

int charCode;

charCode = (int)'a';

The value 97 is stored in the variable.

Two strings are compared, then, by actually comparing their numeric codes.

The strings “a” and “b” are not equal because code 97 is not code 98. The

compareTo method actually lets us determine the exact relationship between

two String objects. We’ll see how to use that method shortly.

The first comparison method we’ll examine is the Equals method. This

method is called from a String object and takes another String object as its

argument. It then compares the two String objects character-by-character. If

they contain the same characters (based on their numeric codes), the method

returns True. Otherwise, the method returns False. The method is called like

this:

string s1 = "foobar";

string s2 = "foobar";

if (s1.Equals(s2))

Console.WriteLine("They are the same.");

else

Console.WriteLine("They are not the same.");

The next method for comparing strings is CompareTo. This method also

takes a String as an argument but it doesn’t return a Boolean value. Instead,

the method returns either 1, −1, or 0, depending on the relationship between

128 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

the passed-in string and the string instance calling the method. Here are some

examples:

string s1 = "foobar";

string s2 = "foobar";

Console.WriteLine(s1.CompareTo(s2)); // returns 0

s2 = "foofoo";

Console.WriteLine(s1.CompareTo(s2)); // returns -1

s2 = "fooaar";

Console.WriteLine(s1.CompareTo(s2)); // returns 1

If two strings are equal, the CompareTo method returns a 0; if the passed-in

string is “below” the method-calling string, the method returns a −1; if the

passed-in string is “above” the method-calling string, the method returns a 1.

An alternative to the CompareTo method is the Compare method, which

is usually called as a class method. This method performs the same type of

comparison as the CompareTo method and returns the same values for the

same comparisons. The Compare method is used like this:

static void Main() {

string s1 = "foobar";

string s2 = "foobar";

int compVal = String.Compare(s1, s2);

switch(compVal) {

case 0 : Console.WriteLine(s1 + " " + s2 + " are

equal");

break;

case 1 : Console.WriteLine(s1 + " is less than " +

s2);

break;

case 2 : Console.WriteLine(s1 + " is greater than

" + s2);

break;

default : Console.WriteLine("Can't compare");

break;

}

}

Working with the String Class 129

Two other comparison methods that can be useful when working with

strings are StartsWith and EndsWith. These instance methods take a string

as an argument and return True if the instance either starts with or ends with

the string argument.

Following are two short programs that demonstrate the use of these meth-

ods. First, we’ll demonstrate the EndsWith method:

using System;

using System.Collections;

class Chapter7 {

static void Main() {

string[] nouns = new string[] {"cat", "dog", "bird",

"eggs", "bones"};

ArrayList pluralNouns = new ArrayList();

foreach (string noun in nouns)

if (noun.EndsWith("s"))

pluralNouns.Add(noun);

foreach (string noun in pluralNouns)

Console.Write(noun + " ");

}

}

First, we create an array of nouns, some of which are in plural form. Then

we loop through the elements of the array, checking to see if any of the nouns

are plurals. If so, they’re added to a collection. Then we loop through the

collection, displaying each plural.

We use the same basic idea in the next program to determine which words

start with the prefix “tri”:

using System;

using System.Collections;

class Chapter7 {

static void Main() {

string[] words = new string[] {"triangle",

"diagonal",

"trimester","bifocal",

"triglycerides"};

ArrayList triWords = new ArrayList();

130 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

foreach (string word in words)

if (word.StartsWith("tri"))

triWords.Add(word);

foreach (string word in triWords)

Console.Write(word + " ");

}

}

Methods for Manipulating Strings

String processing usually involves making changes to strings. We need to

insert new characters into a string, remove characters that don’t belong any-

more, replace old characters with new characters, change the case of certain

characters, and add or remove space from strings, just to name a few opera-

tions. There are methods in the String class for all of these operations, and in

this section we’ll examine them.

We’ll start with the Insert method. This method inserts a string into another

string at a specified position. Insert returns a new string. The method is called

like this:

String1 = String0.Insert(Position, String)

Let’s look at an example:

using System;

class chapter7 {

static void Main() {

string s1 = "Hello, . Welcome to my class.";

string name = "Clayton";

int pos = s1.IndexOf(",");

s1 = s1.Insert(pos+2, name);

Console.WriteLine(s1);

}

}

The output is

Hello, Clayton. Welcome to my class.

The program creates a string, s1, which deliberately leaves space for a name,

much like you’d do with a letter you plan to run through a mail merge. We

Working with the String Class 131

add two to the position where we find the comma to make sure there is a

space between the comma and the name.

The next most logical method after Insert is Remove. This method takes

two Integer arguments: a starting position and a count, which is the number

of characters you want to remove. Here’s the code that removes a name from

a string after the name has been inserted:

using System;

class chapter7 {

static void Main() {

string s1 = "Hello, . Welcome to my class.";

string name = "Ella";

int pos = s1.IndexOf(",");

s1 = s1.Insert(pos+2, name);

Console.WriteLine(s1);

s1 = s1.Remove(pos+2, name.Length);

Console.WriteLine(s1);

}

}

The Remove method uses the same position for inserting a name to remove

the name, and the count is calculated by taking the length of the name variable.

This allows us to remove any name inserted into the string, as shown by this

code fragment and output screen:

Dim name As String = "William Shakespeare"

Dim pos As Integer = s1.IndexOf(",")

s1 = s1.Insert(pos + 2, name)

Console.WriteLine(s1)

s1 = s1.Remove(pos + 2, name.Length())

Console.WriteLine(s1)

132 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

The next logical method is the Replace method. This method takes two

arguments: a string of characters to remove and a string of characters to

replace them with. The method returns the new string. Here’s how to use

Replace:

using System;

class chapter7 {

static void Main() {

string[] words = new string[] {"recieve", "decieve",_

"reciept"};

for(int i = 0; i <= words.GetUpperBound(0); i++) {

words[i] = words[i].Replace("cie", "cei");

Console.WriteLine(words[i]);

}

}

}

The only tricky part of this code is the way the Replace method is called.

Since we’re accessing each String object via an array element, we have to

use array addressing followed by the method name, causing us to write this

fragment:

words(index).Replace("cie", "cei");

There is no problem with doing this, of course, because the compiler knows

that words(index) evaluates to a String object. (We should also mention that

Intellisense allows this when writing the code using Visual Studio.NET.)

When displaying data from our programs, we often want to align the data

within a printing field in order to line the data up nicely. The String class

includes two methods for performing this alignment: PadLeft and PadRight.

The PadLeft method right-aligns a string and the PadRight method left-aligns

a string. For example, if you want to print the word “Hello” in a 10-character

field right-aligned, you would write this:

string s1 = "Hello";

Console.WriteLine(s1.PadLeft(10));

Console.WriteLine("world");

Working with the String Class 133

The output is

Hello

world

Here’s an example using PadRight:

string s1 = "Hello";

string s2 = "world";

string s3 = "Goodbye";

Console.Write(s1.PadLeft(10));

Console.WriteLine(s2.PadLeft(10));

Console.Write(s3.PadLeft(10));

Console.WriteLine(s2.Padleft(10));

The output is

Hello world

Goodbye world

Here’s one more example that demonstrates how we can align data from an

array to make the data easier to read:

using System;

class chapter7 {

static void Main() {

string[,] names = new string[,]

{{"1504", "Mary", "Ella", "Steve", "Bob"},

{"1133", "Elizabeth", "Alex", "David", "Joe"},

{"2624", "Joel", "Chris", "Craig", "Bill"}};

Console.WriteLine();

Console.WriteLine();

for(int outer = 0; outer <= names.GetUpperBound(0);

outer++) {

for(int inner = 0; inner <=

names.GetUpperBound(1); inner++)

134 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

Console.Write(names[outer, inner] + " ");

Console.WriteLine();

}

Console.WriteLine();

Console.WriteLine();

for(int outer = 0; outer <= names.GetUpperBound(0);

outer++) {

for(int inner = 0; inner <=_

names.GetUpperBound(1);inner++)

Console.Write _

(names[outer, inner].PadRight(10) + " ");

Console.WriteLine();

}

}

}

The output from this program is

The first set of data is displayed without padding and the second set is dis-

played using the PadRight method.

We already know that the & (ampersand) operator is used for string con-

catenation. The String class also includes a method Concat for this purpose.

This method takes a list of String objects, concatenates them, and returns the

resulting string. Here’s how to use the method:

using System;

class chapter7 {

static void Main() {

Working with the String Class 135

string s1 = "hello";

string s2 = "world";

string s3 = "";

s3 = String.Concat(s1, " ", s2);

Console.WriteLine(s3);

}

}

We can convert strings from lowercase to uppercase (and vice versa) using

the ToLower and ToUpper methods. The following program fragment demon-

strates how these methods work:

string s1 = "hello";

s1 = s1.ToUpper();

Console.WriteLine(s1);

string s2 = "WORLD";

Console.WriteLine(s2.ToLower());

We end this section with a discussion of the Trim and TrimEnd methods.

When working with String objects, they sometimes have extra spaces or other

formatting characters at the beginning or at the end of the string. The Trim

and TrimEnd methods will remove spaces or other characters from either end

of a string. You can specify either a single character to trim or an array of

characters. If you specify an array of characters, if any of the characters in the

array are found, they will be trimmed from the string.

Let’s first look at an example that trims spaces from the beginning and end

of a set of string values:

using System;

class chapter7 {

static void Main() {

string[] names = new string[] {" David", " Raymond",

"Mike ", "Bernica "};

Console.WriteLine();

showNames(names);

Console.WriteLine();

trimVals(names);

136 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

Console.WriteLine();

showNames(names);

}

static void showNames(string[] arr) {

for(int i = 0; i <= arr.GetUpperBound(0); i++)

Console.Write(arr[i]);

}

static void trimVals(string[] arr) {

char[] charArr = new char[] {' '};

for(int i = 0; i<= arr.GetUpperBound(0); i++) {

arr[i] = arr[i].Trim(charArr[0]);

arr[i] = arr[i].TrimEnd(charArr[0]);

}

}

}

Here is the output:

Here’s another example where comments from a page of HTML code are

stripped of HTML formatting:

using System;

class chapter7 {

static void Main() {

string[] htmlComments = new string[]

{"<!-- Start Page Number Function -->",

"<!-- Get user name and password -->",

"<!-- End Title page -->",

"<!-- End script -->"};

char[] commentChars = new char[] {'<', '!', '-',

'>'};

The StringBuilder Class 137

for(int i = 0; i <= htmlComments.GetUpperBound(0);

i++) {

htmlComments[i] = htmlComments[i].

Trim(commentChars);

htmlComments[i] = htmlComments[i].

TrimEnd(commentChars);

}

for(int i = 0; i <= htmlComments.GetUpperBound(0);

i++)

Console.WriteLine("Comment: " + htmlComments[i]);

}

}

Here’s the output:

THE STRINGBUILDER CLASS

The StringBuilder class provides access to mutable String objects. Objects of

the String class are immutable, meaning that they cannot be changed. Every

time you change the value of a String object, a new object is created to hold the

value. StringBuilder objects, on the other hand, are mutable. When you make

a change to a StringBuilder object, you are changing the original object, not

working with a copy. In this section, we discuss how to use the StringBuilder

class for those situations where many changes are to be to the String objects

in your programs. We end the section, and the chapter, with a timing test

to determine if working with the StringBuilder class is indeed more efficient

than working with the String class.

The StringBuilder class is found in the System.Text namespace so you must

import this namespace into your program before you can use StringBuilder

objects.

138 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

Constructing StringBuilder Objects

You can construct a StringBuilder object in one of three ways. The first way

is to create the object using the default constructor:

StringBuilder stBuff1 = new StringBuilder();

This line creates the object stBuff1 with the capacity to hold a string 16

characters in length. This capacity is assigned by default, but it can be changed

by passing in a new capacity in a constructor call, like this:

StringBuilder stBuff2 = New StringBuilder(25);

This line builds an object that can initially hold 25 characters. The final

constructor call takes a string as the argument:

StringBuilder stBuff3 = New StringBuilder("Hello,

world");

The capacity is set to 16 because the string argument didn’t exceed 16 char-

acters. Had the string argument been longer than 16, the capacity would have

been set to 32. Every time the capacity of a StringBuilder object is exceeded,

the capacity is increased by 16 characters.

Obtaining and Setting Information
about StringBuilder Objects

There are several properties in the StringBuilder class that you can use to

obtain information about a StringBuilder object. The Length property specifies

the number of characters in the current instance and the Capacity property

returns the current capacity of the instance. The MaxCapacity property returns

the maximum number of characters allowed in the current instance of the

object (though this is automatically increased if more characters are added to

the object).

The following program fragment demonstrates how to use these properties:

StringBuilder stBuff = new StringBuilder("Ken

Thompson");

The StringBuilder Class 139

Console.WriteLine _

("Length of stBuff3: " & stBuff.Length());

Console.WriteLine _

("Capacity of stBuff3: " & stBuff.Capacity());

Console.WriteLine _

("Maximum capacity of stBuff3: " +

stBuff.MaxCapacity);

The Length property can also be used to set the current length of a String-

Builder object, as in

stBuff.Length = 10;

Console.Write(stBuff3);

This code outputs “Ken Thomps”.

To ensure that a minimum capacity is maintained for a StringBuilder

instance, you can call the EnsureCapacity method, passing in an integer that

states the minimum capacity for the object. Here’s an example:

stBuff.EnsureCapacity(25);

Another property you can use is the Chars property. This property either

returns the character in the position specified in its argument or sets the

character passed as an argument. The following code shows a simple example

using the Chars property.

StringBuilder stBuff = New StringBuilder("Ronald

Knuth");

If (stBuff.Chars(0) <> "D"c)

stBuff.Chars(0) = "D";

Modifying StringBuffer Objects

We can modify a StringBuilder object by appending new characters to the end

of the object, inserting characters into an object, replacing a set of characters

in an object with different characters, and remove characters from an object.

We will discuss the methods responsible for these operations in this section.

140 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

You can add characters to the end of a StringBuilder object by using the

Append method. This method takes a string value as an argument and con-

catenates the string to the end of the current value in the object. The following

program demonstrates how the Append method works:

Using System.Text;

class chapter7 {

static void Main() {

StringBuilder stBuff As New StringBuilder();

String[] words = new string[] _

{"now ", "is ", "the ", "time ", "for ", "all ",

"good ", "men ", "to ", "come ", "to ", "the ",

"aid ", "of ", "their ", "party"}

For(int i = 0; i <= words.GetUpperBound(0); i++)

stBuff.Append(words(index));

Console.WriteLine(stBuff);

}

}

The output is, of course

Now is the time for all good men to come to the aid of

their party

A formatted string can be appended to a StringBuilder object. A formatted

string is a string that includes a format specification embedded in the string.

There are too many format specifications to cover in this section, so we’ll

just demonstrate a common specification. We can place a formatted number

within a StringBuilder object like this:

Using System.Text

class chapter7 {

static void Main() {

StringBuilder stBuff = New StringBuilder();

Console.WriteLine();

stBuff.AppendFormat("Your order is for {0000}

widgets.", 234);

The StringBuilder Class 141

stBuff.AppendFormat("\nWe have {0000} widgets

left.", 12);

Console.WriteLine(stBuff);

}

}

The output from this program is

The format specification is enclosed within curly braces that are embedded

in a string literal. The data after the comma is placed into the specification

when the code is executed. See the C# documentation for a complete list of

format specifications.

Next is the Insert method. This method allows us to insert a string into the

current StringBuilder object. The method can take up to three arguments. The

first argument specifies the position to begin the insertion. The second argu-

ment is the string you want to insert. The third argument, which is optional,

is an integer that specifies the number of times you want to insert the string

into the object.

Here’s a small program that demonstrates how the Insert method is used:

Using System.Text;

class chapter7 {

static void Main()

StringBuilder stBuff = New StringBuilder();

stBuff.Insert(0, "Hello");

stBuff.Append("world");

stBuff.Insert(5, ", ");

Console.WriteLine(stBuff);

char chars[] = new char[]{'t', 'h', 'e', 'r', 'e'};

stBuff.Insert(5, " " & chars);

Console.WriteLine(stBuff);

}

}

142 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

The output is

Hello, world

Hello there, world

The following program utilizes the Insert method using the third argument

for specifying the number of insertions to make:

StringBuilder stBuff = New StringBuilder();

stBuff.Insert(0, "and on ", 6);

Console.WriteLine(stBuff);

The output is

and on and on and on and on and on and on

The StringBuilder class has a Remove method for removing characters from

a StringBuilder object. This method takes two arguments: a starting position

and the number of characters to remove. Here’s how it works:

StringBuilder stBuff = New StringBuilder("noise in

+++++string");

stBuff.Remove(9, 5);

Console.WriteLine(stBuff);

The output is

noise in string

You can replace characters in a StringBuilder object with the Replace

method. This method takes two arguments: the old string to replace and

the new string to put in its place. The following code fragment demonstrates

how the method works:

StringBuilder stBuff = New StringBuilder("recieve _

decieve reciept");

stBuff.Replace("cie", "cei");

Console.WriteLine(stBuff);

Each “cie” is replaced with “cei”.

Comparing the Efficiency of the String Class to StringBuilder 143

When working with StringBuilder objects, you will often want to convert

them to strings, perhaps in order to use a method that isn’t found in the

StringBuilder class. You can do this with the ToString. This method returns a

String instance of the current StringBuilder instance. An example is shown:

Using System.Text;

class chapter7 {

static void Main() {

StringBuilder stBuff =

New StringBuilder("HELLO WORLD");

string st = stBuff.ToString();

st = st.ToLower();

st = st.Replace(st.Substring(0, 1),

st.Substring(0, 1).ToUpper());

stBuff.Replace(stBuff.ToString, st);

Console.WriteLine(stBuff);

}

}

This program displays the string “Hello world” by first converting stBuff to

a string (the st variable), making all the characters in the string lowercase,

capitalizing the first letter in the string, and then replacing the old string in

the StringBuilder object with the value of st. The ToString method is used in

the first argument to Replace because the first parameter is supposed to be a

string. You can’t call the StringBuilder object directly here.

COMPARING THE EFFICIENCY OF THE STRING CLASS

TO STRINGBUILDER

We end this chapter with a discussion of how the String class and the String-

Builder class compare in efficiency. We know that String objects are immutable

and StringBuilder objects are not. It is reasonable to believe, then, that the

StringBuilder class is more efficient. However, we don’t want to always use the

StringBuilder class because the StringBuilder class is lacking several methods

we need to perform reasonably powerful string processing. It is true that we

can transform StringBuilder objects into String objects (and then back again)

when we need to use String methods (see the previous section), but we need

144 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

to know when we need to use StringBuilder objects and when it’s okay to just

stick with String objects.

The test we use is very simple. Our program has two subroutines: one that

builds a String object of a specified size and another that builds a StringBuilder

object of the same size. Each of the subroutines is timed, using objects from

the Timing class we developed at the beginning of the book. This procedure

is repeated three times, first for building objects of 100 characters, then for

1,000 characters, and finally for 10,000 characters. The times are then listed

in pairs for each size. Here’s the code we used:

Using Timing;

Using System.Text;

class chapter7 {

static void Main() {

int size = 100;

Timing timeSB = New Timing();

Timing timeST = New Timing();

Console.WriteLine();

for(int i = 0; i <= 3; i++) {

timeSB.startTime();

BuildSB(size);

timeSB.stopTime();

timeST.startTime();

BuildString(size);

timeST.stopTime();

Console.WriteLine _

("Time (in milliseconds) to build StringBuilder

" + "object for " & size & " elements: " +

timeSB.Result.TotalMilliseconds);

Console.WriteLine _

("Time (in milliseconds) to build String object

" + "for " & size & " elements: " +

timeST.Result.TotalMilliseconds);

Console.WriteLine();

size *= 10;

}

}

static void BuildSB(int size) {

StringBuilder sbObject = New StringBuilder();

Summary 145

for(int i = 0; i <= size; i++)

sbObject.Append("a");

}

static void BuildString(int size) {

string stringObject = "";

for(int i = 0; i <= size; i++)

stringObject & = "a";

}

}

Here are the results:

For relatively small objects, there is really no difference between String

objects and StringBuilder objects. In fact, you can argue that for strings of

up to 1,000 characters, using the String class is just as efficient as using the

StringBuilder class. However, when we get to 10,000 characters, there is a

vast increase in efficiency for the StringBuilder class. There is, though, a vast

difference between 1,000 characters and 10,000 characters. In the exercises,

you’ll get the opportunity to compare objects that hold more than 1,000 but

less than 10,000 characters.

SUMMARY

String processing is a common operation in most C# programs. The String

class provides a multitude of methods for performing every kind of operation

on strings you will need. Although the “classic” built-in string functions (Mid,

InStr, etc.) are still available for use, you should prefer the String class methods

to these functions, both for performance and for clarity.

146 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

String class objects in C# are immutable, meaning that every time you make

a change to an object, a new copy of the object is created. If you are creating

long strings, or are making many changes to the same object, you should use

the StringBuffer class instead. StringBuffer objects are mutable, allowing for

much better performance. This is shown in timing tests when String objects

and StringBuilder objects of over 1,000 characters in length are created.

EXERCISES

1. Write a function that converts a phrase into pig Latin. A word is converted

to pig Latin by removing the first character of the word, placing it at the

back of the word, and adding the characters “ay” to the word. For example,

“hello world” in pig Latin is “ellohay orldway.” Your function can assume

that each word consists of at least two letters and that each word is separated

by one space, with no punctuation marks.

2. Write a function that counts the occurrences of a word in a string. The

function should return an integer. Do not assume that just one space sep-

arates words and a string can contain punctuation. Write the function so

that it works with either a String argument or a StringBuilder object.

3. Write a function that takes a number, such as 52, and returns the number

as a word, as in fifty-two.

4. Write a subroutine that takes a simple sentence in noun-verb-object form

and parses the sentence into its different parts. For example, the sentence

“Mary walked the dog” is parsed into this:

Noun: Mary

Verb: walked

Object: the dog

This function should work with both String objects and StringBuilder

objects.

CHAPTER 8

Pattern Matching and
Text Processing

Whereas the String and StringBuilder classes provide a set of methods

that can be used to process string-based data, the RegEx and its supporting

classes provide much more power for string-processing tasks. String process-

ing mostly involves looking for patterns in strings (pattern matching) and it is

performed via a special language called a regular expression. In this chapter,

we look at how to form regular expressions and how to use them to solve

common text processing tasks.

AN INTRODUCTION TO REGULAR EXPRESSIONS

A regular expression is a language that describes patterns of characters in

strings, along with descriptors for repeating characters, alternatives, and

groupings of characters. Regular expressions can be used to perform both

searches in strings and substitutions in strings.

A regular expression itself is just a string of characters that define a pattern

you want to search for in another string. Generally, the characters in a regular

expression match themselves, so that the regular expression “the” matches

that sequence of characters wherever they are found in a string.

A regular expression can also include special characters that are called

metacharacters. Metacharacters are used to signify repetition, alternation, or

grouping. We will examine how these metacharacters are used shortly.

147

148 PATTERN MATCHING AND TEXT PROCESSING

Most experienced computer users have used regular expressions in their

work, even if they weren’t aware they were doing so at the time. Whenever

someone types the following command at a command prompt:

C:\>dir myfile.exe

the regular expression is “myfile.exe”. The regular expression is passed to

the dir command and any files in the file system matching “myfile.exe” are

displayed on the screen.

Most users have also used metacharacters in regular expressions. When

you type:

C:\>dir *.cs

your are using a regular expression that includes a metacharacter. The regular

expression is “∗.cs”. The asterisk (∗) is a metacharacter that means “match

zero or more characters”, whereas the rest of the expression, “.vb” are just

normal characaters found in a file. This regular expression states “match all

files that have any file name and the extension ‘vb’.” This regular expression

is passed to the dir command and all files with a. vb extension are displayed

on the screen.

Of course, there are much more powerful regular expressions we can build

and use, but these first two examples serve as a good introduction. Now let’s

look at how we use regular expressions in C# and how to useful regular

expressions.

Working With Regular Expressions: An Overview

To use regular expressions, we have to import the RegEx class into our pro-

grams. This class is found in the System.Text.RegularExpressions namespace.

Once we have the class imported into our program, we have to decide

what we want to do with the RegEx class. If we want to perform matching,

we need to use the Match class. If we’re going to do substitutions, we don’t

need the Match class. Instead, we can use the Replace method of the RegEx

class.

Let’s start by looking at how to match words in a string. Given a sample

string, “the quick brown fox jumped over the lazy dog”, we want to find out

An Introduction to Regular Expressions 149

where the word “the” is found in the string. The following program performs

this task:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

Regex reg = New Regex("the");

string str1 = "the quick brown fox jumped over

the lazy dog";

Match matchSet;

int matchPos;

matchSet = reg.Match(str1)

If (matchSet.Success) {

matchPos = matchSet.Index;

Console.WriteLine("found match at position:" +

matchPos);

}

}

}

The first thing we do is create a new RegEx object and pass the constructor

the regular expression we’re trying to match. After we initialize a string to

match against, we declare a Match object, matchSet. The Match class pro-

vides methods for storing data concerning a match made with the regular

expression.

The If statement uses one of the Match class properties, Success, to deter-

mine if there was a successful match. If the value returns True, then the regular

expression matched at least one substring in the string. Otherwise, the value

stored in Success is False.

There’s another way a program can check to see if a match is successful.

You can pre-test the regular expression by passing it and the target string to

the IsMatch method. This method returns True if a match is generated by the

regular expression and False otherwise. The method works like this:

If (Regex.IsMatch(str1, "the")) {

Match aMatch;

aMatch = reg.Match(str1);

}

150 PATTERN MATCHING AND TEXT PROCESSING

One problem with the Match class is that it only stores one match. In the

preceding example, there are two matches for the substring “the”. We can

use another class, the Matches class, to store multiple matches with a regular

expression. We can store the matches in a MatchCollection object in order to

work with all the matches found. Here’s an example (only the code inside the

Main function is included):

using System;

using System.Text.RegularExpressions;

class chapter8

{

static void Main()

{

Regex reg = new Regex("the");

string str1 = "the quick brown fox jumped over

the lazy dog";

MatchCollection matchSet;

matchSet = reg.Matches(str1);

if (matchSet.Count > 0)

foreach (Match aMatch in matchSet)

Console.WriteLine("found a match at: " +

aMatch.Index);

Console.Read();

}

}

Next, we examine how to use the Replace method to replace one string

with another string. The Replace method can be called as a class method with

three arguments: a target string, a substring to replace, and the substring to

use as the replacement. Here’s a code fragment that uses the Replace method:

string s = "the quick brown fox jumped over the brown

dog";

s = Regex.Replace(s, "brown", "black");

The string now reads, “the quick black fox jumped over the black dog”.

Quantifiers 151

There are many more uses of the RegEx and supporting classes for pattern

matching and text processing. We will examine them as we delve deeper into

how to form and use more complex regular expressions.

QUANTIFIERS

When writing regular expressions, we often want to add quantity data to a

regular expression, such as “match exactly twice” or “match one or more

times”. We can add this data to our regular expressions using quantifiers.

The first quantifier we’ll look at is the plus sign (+). This quantifier indicates

that the regular expression should match one or more of the immediately

preceding character. The following program demonstrates how to use this

quantifier:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string[] words = new string[] {"bad", "boy", "baaad",

"bear", "bend"};

foreach (string word in words)

if (Regex.IsMatch(word, "ba+"))

Console.WriteLine(word);

}

}

The words matched are “bad” and “baaad”. The regular expression specifies

that a match is generated for each string that starts with the letter “b” and

includes one or more of the letter “a” in the string.

A less restrictive quantifier is the asterisk (∗). This quantifier indicates

that the regular expression should match zero or more of the immediately

preceding character. This quantifier is very hard to use in practice because

the asterisk usually ends up matching almost everything. For example, using

the preceding code, if we change the regular expression to read “ba∗”, every

word in array is matched.

The question mark (?) is a quantifier that matches exactly zero or one time.

If we change the regular expression in the preceding code to “ba?d”, the only

word that matches is “bad”.

152 PATTERN MATCHING AND TEXT PROCESSING

A more definite number of matches can be specified by placing a number

inside a set of curly braces, as in {n}, where n is the number of matches to

find. The following program demonstrates how this quantifier works:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string[] words = new string[] {"bad", "boy", "baad",

"baaad", "bear", "bend"};

foreach (string word in words)

if (Regex.IsMatch(word, "ba{2}d"))

Console.WriteLine(word);

}

}

This regular expression matches only the string “baad”.

You can specify a minimum and a maximum number of matches by pro-

viding two digits inside the curly braces: {n,m}, where n is the minimum

number of matches and m is the maximum. The following regular expression

will match “bad”, “baad”, and “baaad” in the string above:

"ba{1,3}d"

We could have also matched the same number of strings here by writ-

ing “ba{1,}d”, which specifies at least one match, but without specifying a

maximum number.

The quantifiers we’ve discussed so far exhibit what is called greedy behavior.

They try to make as many matches as possible, and this behavior often leads

to matches that you didn’t really mean to make. Here’s an example:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string[] words = new string[]{"Part", "of", "this",

"string", "is", "bold"};

string regExp = "<.*>";

MatchCollection aMatch;

foreach (string word in words) {

Using Character Classes 153

if (Regex.IsMatch(word, regExp)) {

aMatch = Regex.Matches(word, regExp);

for(int i = 0; i < aMatch.Count; i++)

Console.WriteLine(aMatch[i].Value);

}

}

}

}

We expect this program to return just the two tags: and. Instead,

because of greediness, the regular expression matches string. We

can solve this problem using the lazy quantifier: the question mark (?), which

is also a quantifier. When the question mark is placed directly after a quantifier,

it makes the quantifier lazy. Being lazy means the regular expression the lazy

quantifier is used in will try to make as few matches as possible, instead of as

many as possible.

Changing the regular expression to read “< .+ >“ doesn’t help either. We

need to use the lazy quantifier, and once we do, “< .+? >”, we get the right

matches: and. The lazy quantifier can be used with all the quanti-

fiers, including the quantifiers enclosed in curly braces.

USING CHARACTER CLASSES

In this and the following sections, we examine how to use the major elements

that make up regular expressions. We start with character classes, which allow

us to specify a pattern based on a series of characters.

The first character class we discuss is the period (.). This is a very easy

character class to use but it is also very problematic. The period matches any

character in a string. Here’s an example:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string str1 = "the quick brown fox jumped over the

lazy dog";

MatchCollection matchSet;

matchSet = Regex.Matches(str1, ".");

154 PATTERN MATCHING AND TEXT PROCESSING

foreach (Match aMatch in matchSet)

Console.WriteLine("matches at: " + aMatch.Index);

}

}

The output from this program illustrates how the period works:

The period matches every single character in the string.

A better way to use the period is to use it to define a range of characters

within a string that are bound by a beginning and/or an ending character.

Here’s one example, using the same string:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string str1 = "the quick brown fox jumped over the

lazy dog one time";

MatchCollection matchSet;

matchSet = Regex.Matches(str1, "t.e");

foreach (Match aMatch in matchSet)

Console.WriteLine("Matches at: " + aMatch.Index);

}

}

Using Character Classes 155

The output from this program is:

matches: the at: 0

matches: the at: 32

When using regular expressions, we often want to check for patterns that

include groups of characters. We can write a regular expression that con-

sists of such a group by enclosing the group in brackets ([]). The characters

inside the brackets are called a character class. If we wanted to write a regular

expression that matched any lowercase alphabetic character, we would write

the expression like this: [abcdefghijklmnopqrstuvwxyz]. But that’s fairly hard

to write, so we can write a shorter version by indicating a range of letters

using a hyphen: [a-z].

Here’s how we can use this regular expression to match a pattern:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string str1 = "THE quick BROWN fox JUMPED over THE

lazy DOG";

MatchCollection matchSet;

matchSet = Regex.Matches(str1, "[a-z]");

foreach (Match aMatch in matchSet)

Console.WriteLine("Matches at: " + aMatch.Index);

}

}

The letters matched are those that make up the words “quick”, “fox”, “over”,

and “lazy”.

Character classes can be formed using more than one group. If we want to

match both lowercase letters and uppercase letters, we can write this regular

expression: “[A-Za-z]”. You can also write a character class consisting of digits,

like this: [0–9], if you want to include all ten digits.

We can create the reverse, or negation, of a character class by placing a

caret (∧) before the character class. For example, if we have the character class

[aeiou] representing the class of vowels, we can write [∧aeiou] to represent

the consonants, or nonvowels.

156 PATTERN MATCHING AND TEXT PROCESSING

If we combine these three character classes, we form what is called a

word in regular expression parlance. The regular expression looks like this:

[A-Za-z0–9]. There is also a shorter character class we can use to express this

same class: \w. The negation of \w, or the regular expression to express a

nonword character (such as a mark of punctuation) is expressed by \W.

The character class for digits ([0–9]) can also be written as \d (note that

because a backslash followed by another character can be an escape sequence

in C#, codes such as \d are written \\d in C# code to indicate a regular

expression and not an escape code) the first backslash), and the character

class for nondigits ([∧0–9]) can be written as \D. Finally, because a white

space plays such an important role in text processing, \s is used to represent

white space characters whereas \S represents non-white-space characters. We

will examine using the white space character classes later when we examine

the grouping constructs.

MODIFYING REGULAR EXPRESSIONS USING ASSERTIONS

C# includes a set of operators you can add to a regular expression that change

the behavior of the expression without causing the regular expression engine

to advance through the string. These operators are called assertions.

The first assertion we’ll examine causes a regular expression to find matches

only at the beginning of a string or a line. This assertion is made using the

caret symbol (∧). In the following program, the regular expression matches

strings that have the letter “h” only as the first character in the string. An “h”

in other places is ignored. Here’s the code:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string[] words = new string[]{"heal", "heel",

"noah", "techno"};

string regExp = "^h";

Match aMatch;

foreach (string word in words)

if (Regex.IsMatch(word, regExp)) {

aMatch = Regex.Match(word, regExp);

Using Grouping Constructs 157

Console.WriteLine("Matched: " + word + " at

position: " + aMatch.Index);

}

}

}

The output of this code shows that just the strings “heal” and “heel” match.

There is also an assertion that causes a regular expression to find matches

only at the end of the line. This assertion is the dollar sign ($). If we modify

the previous regular expression as:

string regExp = "h$";

“noah” is the only match found.

Another assertion you can make in a regular expression is to specify that

all matches can occur only at word boundaries. This means that a match can

only occur at the beginning or end of a word that is separated by spaces. This

assertion is made with \b. Here’s how the assertion works:

string words = "hark, what doth thou say, Harold? ";

string regExp = "\\bh";

This regular expression matches the words “hark” and “Harold” in the string.

There are other assertions you can use in regular expressions, but these are

three of the most commonly used.

USING GROUPING CONSTRUCTS

The RegEx class has a set of grouping constructs you can use to put success-

ful matches into groups, which make it easier to parse a string into related

matches. For example, you are given a string of birthday dates and ages and

you want to identify just the dates. By grouping the dates together, you can

identify them as a group and not just as individual matches.

Anonymous Groups

There are several different grouping constructs you can use. The first construct

is formed by surrounding the regular expression in parentheses. You can think

158 PATTERN MATCHING AND TEXT PROCESSING

of this as an anonymous group, since groups can also be named, as we’ll see

shortly. As an example, look at the following string:

"08/14/57 46 02/25/29 45 06/05/85 18 03/12/88 16

09/09/90 13"

This string is a combination of birthdates and ages. If we want to match just the

ages, not the birthdates, we can write the regular expression as an anonymous

group:

(\\s\\d{2}\\s)

By writing the regular expression this way, each match in the string is identified

by a number, starting at one. Number zero is reserved for the entire match,

which will usually include much more data. Here is a little program that uses

an anonymous group:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string words = "08/14/57 46 02/25/59 45 06/05/85 18" +

"03/12/88 16 09/09/90 13";

string regExp1 = "(\\s\\d{2}\\s)";

MatchCollection matchSet = Regex.Matches(words,

regExp1);

foreach (Match aMatch in matchSet)

Console.WriteLine(aMatch.Groups[0].Captures[0]);

}

}

Named Groups

Groups are more commonly built using names. A named group is easier to

work with because we can refer to the group by name when retrieving matches.

A named group is formed by prefixing the regular expression with a question

mark and a name enclosed in angle brackets. For example, to name the group

Using Grouping Constructs 159

in the previous program code “ages”, we write the regular expression like this:

(?<ages>\\s\\d{2}\\s)

The name can also be surrounded by single quotes instead of angle brackets.

Now let’s modify this program to search for dates instead of ages, and use

a grouping construct to organize the dates. Here’s the code:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string words = "08/14/57 46 02/25/59 45 06/05/85 18 " +

"03/12/88 16 09/09/90 13";

string regExp1 = "(?<dates>(\\d{2}/\\d{2}/\\d{2}))\\s";

MatchCollection matchSet = Regex.Matches(words,

regExp1);

foreach (Match aMatch in matchSet)

Console.WriteLine("Date: {0}", _

aMatch.Groups["dates"]);

}

}

Here’s the output:

Let’s focus on the regular expression used to generate the output:

(\\d{2}/\\d{2}/\\d{2}))\\s

You can read this expression as “two digits followed by a slash, followed by

two more digits and a slash, followed by two more digits and a slash, followed

160 PATTERN MATCHING AND TEXT PROCESSING

by a space.” To make the regular expression a group, we make the following

additions:

(?<dates>(\\d{2}/\\d{2}/\\d{2}))\\s

For each match found in the string, we pull out the group by using the Groups

method of the Match class:

Console.WriteLine("Date: {0}", aMatch.Groups("dates"));

Zero-Width Lookahead and Lookbehind Assertions

Assertions can also be made that determine how far into a match a regular

expression will look for matches, going either forward or backward. These

assertions can be either positive or negative, meaning that the regular expres-

sion is looking for either a particular pattern to match (positive) or a partic-

ular pattern not to match (negative). This will be clearer when we see some

examples.

The first of these assertions we examine is the positive lookahead assertion.

This assertion is stated like this:

(?= reg-exp-char)

where reg-exp-char is a regular expression character or metacharacter. This

assertion states that a match is continued only if the current subexpression

being checked matches at the specified position on the right. Here’s a code

fragment that demonstrates how this assertion works:

string words = "lions lion tigers tiger bears,bear";

string regExp1 = "\\w+(?=\\s)";

The regular expression indicates that a match is made on each word that is

followed by a space. The words that match are “lions”, “lion”, “tigers”, and

“tiger”. The regular expression matches the words but does not match the

space. That is very important to remember.

The next assertion is the negative lookahead assertion. This assertion

continues a match only if the current subexpression being checked does

The CapturesCollection Class 161

not match at the specified position on the right. Here’s an example code

fragment:

string words = "subroutine routine subprocedure

procedure";

string regExp1 = "\\b(?!sub)\\w+\\b";

This regular expression indicates that a match is made on each word that

does not begin with the prefix “sub”. The words that match are “routine” and

“procedure”.

The next assertions are called lookbehind assertions. These assertions look

for positive or negative matches to the left instead of to the right. The following

code fragment demonstrates how to write a positive lookbehind assertion:

string words = "subroutines routine subprocedures

procedure";

string regExp1 = "\\b\\w+(?<=s)\\b";

This regular expression looks for word boundaries that occur after an “s”. The

words that match are “subroutines” and “subprocedures”.

A negative lookbehind assertion continues a match only if the subexpres-

sion does not match at the position on the left. We can easily modify the

above-mentioned regular expression just to match only words that don’t end

with the letter “s” like this:

string regExp1 = "\\b\\w+(?<!s)\\b";

THE CAPTURESCOLLECTION CLASS

When a regular expression matches a subexpression, an object called a Cap-

ture is created and is added to a collection called a CapturesCollection. When

you use a named group in a regular expression, that group has its own col-

lection of captures.

To retrieve the captures collected from a regular expression that uses a

named group, you call the Captures property from a Match objects Groups

property. This is easier to see in an example. Using one of the regular

expressions from the previous section, the following code returns all the dates

162 PATTERN MATCHING AND TEXT PROCESSING

and ages found in a string, properly grouped:

using System;

using System.Text.RegularExpressions;

class chapter8 {

static void Main() {

string dates = "08/14/57 46 02/25/59 45 06/05/85 18 " +

"03/12/88 16 09/09/90 13";

string regExp =

"(?<dates>(\\d{2}/\\d{2}/\\d{2}))\\s(?<ages>

(\\d{2}))\\s";

MatchCollection matchSet;

matchSet = Regex.Matches(dates, regExp);

Console.WriteLine();

foreach (Match aMatch in matchSet) {

foreach (Capture aCapture in aMatch.Groups

["dates"].Captures)

Console.WriteLine("date capture: " +

aCapture.ToString());

foreach (Capture aCapture in_

aMatch.Groups["ages"].Captures)

Console.WriteLine("age capture: " +

aCapture.ToString());

}

}

}

The output from this program is:

The outer loop moves through each match, whereas the two inner loops move

through the different Capture collections, one for the dates and one for the

ages. Using the CapturesCollection in this way ensures that each group match

is captured and not just the last match.

Regular Expression Options 163

REGULAR EXPRESSION OPTIONS

There are several options you can set when specifying a regular expression.

These options range from specifying the multiline mode so that a regular

expression will work properly on more than one line of text to compiling a

regular expression so that it will execute faster. The following table lists the

different options you can set.

Before we view the table, we need to mention how these options are set.

Generally, you can set an option by specifying the options constant value as

the third argument to one of the RegEx class’s methods, such as Match as

Matches. For example, if we want to set the Multiline option for a regular

expression, the line of code looks like this:

matchSet = Regex.Matches(dates, regexp,_

RegexOptions.Multiline);

This option, along with the other options, can either be typed in directly or

be selected with Intellisense.

Here are the options available:

RegexOption

member

Inline

character Description

None N/A Specifies that no options are set.

IgnoreCase I Specifies case-insensitive matching.

Multiline M Specifies multi-line mode.

ExplicitCapture N Specifies that the only valid captures are

explicitly named or numbered groups.

Compiled N/A Specifies that the regular expression

will be compiled to assembly.

Singleline S Specifies single-line mode.

IgnorePatternWhiteSpace X Specifies that unescaped white space is

excluded from the pattern and enables
comments following a pound sign (#)

RightToLeft N/A Specifies that the search is from right

to left instead of from left to right.

ECMAScript N/A Specifies that ECMAScript-compliant

behavior is enabled for the expression.

164 PATTERN MATCHING AND TEXT PROCESSING

SUMMARY

Regular expressions present powerful options for performing text processing

and pattern matching. Regular expressions can run the gamut from ridicu-

lously simple (“a”) to complex combinations that look more like line noise

than executable code. Nonetheless, learning to use regular expressions will

allow you to perform text processing on texts you would not even consider

using tools such as the methods of the String class.

This chapter is only able to hint at the power of regular expressions. To

learn more about regular expressions, consult Friedel (1997).

EXERCISES

1. Write regular expressions to match the following:
� a string consists of an “x”, followed by any three characters, and

then a “y”
� a word ending in “ed”
� a phone number
� an HTML anchor tag

2. Write a regular expression that finds all the words in a string that contain

double letters, such as “deep” and “book”.

3. Write a regular expression that finds all the header tags (<h1>, <h2>,

etc.) in a Web page.

4. Write a function, using a regular expression that performs a simple search

and replace in a string.

CHAPTER 9

Building Dictionaries:
The DictionaryBase Class
and the SortedList Class

A dictionary is a data structure that stores data as a key–value pair. The

DictionaryBase class is used as an abstract class to implement different data

structures that all store data as key–value pairs. These data structures can be

hash tables, linked lists, or some other data structure type. In this chapter,

we examine how to create basic dictionaries and how to use the inherited

methods of the DictionaryBase class. We will use these techniques later when

we explore more specialized data structures.

One example of a dictionary-based data structure is the SortedList. This

class stores key–value pairs in sorted order based on the key. It is an interesting

data structure because you can also access the values stored in the structure

by referring to the value’s index position in the data structure, which makes

the structure behave somewhat like an array. We examine the behavior of the

SortedList class at the end of the chapter.

165

166 BUILDING DICTIONARIES

THE DICTIONARYBASE CLASS

You can think of a dictionary data structure as a computerized word dictionary.

The word you are looking up is the key, and the definition of the word is the

value. The DictionaryBase class is an abstract (MustInherit) class that is used

as a basis for specialized dictionary implementations.

The key–value pairs stored in a dictionary are actually stored as Dictio-

naryEntry objects. The DictionaryEntry structure provides two fields, one for

the key and one for the value. The only two properties (or methods) we’re

interested in with this structure are the Key and Value properties. These meth-

ods return the values stored when a key–value pair is entered into a dictionary.

We explore DictionaryEntry objects later in the chapter.

Internally, key–value pairs are stored in a hash table object called Inner-

HashTable. We discuss hash tables in more detail in Chapter 12, so for now

just view it as an efficient data structure for storing key–value pairs.

The DictionaryBase class actually implements an interface from the Sys-

tem.Collections namespace, IDictionary. This interface is actually the basis

for many of the classes we’ll study later in this book, including the ListDic-

tionary class and the Hashtable class.

Fundamental DictionaryBase Class
Methods and Properties

When working with a dictionary object, there are several operations you want

to perform. At a minimum, you need an Add method to add new data, an Item

method to retrieve a value, a Remove method to remove a key–value pair, and

a Clear method to clear the data structure of all data.

Let’s begin the discussion of implementing a dictionary by looking at a

simple example class. The following code shows the implementation of a

class that stores names and IP addresses:

public class IPAddresses : DictionaryBase {

public IPAddresses() {

}

public void Add(string name, string ip) {

base.InnerHashtable.Add(name, ip);

The DictionaryBase Class 167

}

public string Item(string name) {

return base.InnerHashtable[name].ToString();

}

public void Remove(string name) {

base.InnerHashtable.Remove(name);

}

}

As you can see, these methods were very easy to build. The first method

implemented is the constructor. This is a simple method that does nothing

but call the default constructor for the base class. The Add method takes a

name/IP address pair as arguments and passes them to the Add method of the

InnerHashTable object, which is instantiated in the base class.

The Item method is used to retrieve a value given a specific key. The key is

passed to the corresponding Item method of the InnerHashTable object. The

value that is stored with the associated key in the inner hash table is returned.

Finally, the Remove method receives a key as an argument and passes

the argument to the associated Remove method of the inner hash table. The

method then removes both the key and its associated value from the hash

table.

There are two methods we can use without implementing them: Count

and Clear. The Count method returns the number of DictionaryEntry objects

stored in the inner hash table, whereas Clear removes all the DictionaryEntry

objects from the inner hash table.

Let’s look at a program that utilizes these methods:

class chapter9 {

static void Main() {

IPAddresses myIPs = new IPAddresses();

myIPs.Add("Mike", "192.155.12.1");

myIPs.Add("David", "192.155.12.2");

myIPs.Add("Bernica", "192.155.12.3");

Console.WriteLine("There are " + myIPs.Count +

" IP addresses");

Console.WriteLine("David's ip address: " +

myIPs.Item("David"));

myIPs.Clear();

168 BUILDING DICTIONARIES

Console.WriteLine("There are " + myIPs.Count +

" IP addresses");

}

}

The output from this program is:

One modification we might want to make to the class is to overload the

constructor so that we can load data into a dictionary from a file. Here’s the

code for the new constructor, which you can just add into the IPAddresses

class definition:

public IPAddresses(string txtFile) {

string line;

string[] words;

StreamReader inFile;

inFile = File.OpenText(txtFile);

while(inFile.Peek() != -1) {

line = inFile.ReadLine();

words = line.Split(',');

this.InnerHashtable.Add(words[0], words[1]);

}

inFile.Close();

}

Now here’s a new program to test the constructor:

class chapter9 {

static void Main() {

for(int i = 0; i < 4; i++)

Console.WriteLine();

The DictionaryBase Class 169

IPAddresses myIPs = _

new IPAddresses("c:\\data\\ips.txt");

Console.WriteLine("There are {0} IP addresses",

myIPs.Count);

Console.WriteLine("David's IP address: " +

myIPs.Item("David"));

Console.WriteLine("Bernica's IP address: " +

myIPs.Item("Bernica"));

Console.WriteLine("Mike's IP address: " +

myIPs.Item("Mike"));

}

}

The output from this program is:

Other DictionaryBase Methods

There are two other methods that are members of the DictionaryBase class:

CopyTo and GetEnumerator. We discuss these methods in this section.

The CopyTo method copies the contents of a dictionary to a one-

dimensional array. The array should be declared as a DictionaryEntry array,

though you can declare it as Object and then use the CType function to convert

the objects to DictionaryEntry.

The following code fragment demonstrates how to use the CopyTo method:

IPAddresses myIPs = new IPAddresses("c:\ips.txt");

DictionaryEntry[] ips = _

new DictionaryEntry[myIPs.Count-1];

myIPs.CopyTo(ips, 0);

170 BUILDING DICTIONARIES

The formula used to size the array takes the number of elements in the dic-

tionary and then subtracts one to account for a zero-based array. The CopyTo

method takes two arguments: the array to copy to and the index position to

start copying from. If you want to place the contents of a dictionary at the

end of an existing array, for example, you would specify the upper bound of

the array plus one as the second argument.

Once we get the data from the dictionary into an array, we want to work

with the contents of the array, or at least display the values. Here’s some code

to do that:

for(int i = 0; i <= ips.GetUpperBound(0); i++)

Console.WriteLine(ips[i]);

The output from this code is:

Unfortunately, this is not what we want. The problem is that we’re storing

the data in the array as DictionaryEntry objects, and that’s exactly what we

see. If we use the ToString method:

Console.WriteLine(ips[ndex]ToString())

we get the same thing. In order to actually view the data in a DictionaryEntry

object, we have to use either the Key property or the Value property, depending

on if the object we’re querying holds key data or value data. So how do we

know which is which? When the contents of the dictionary are copied to the

array, the data is copied in key–value order. So the first object is a key, the

second object is a value, the third object is a key, and so on.

Now we can write a code fragment that allows us to actually see the data:

for(int i = 0; i <= ips.GetUpperBound(0); i++) {

Console.WriteLine(ips[index].Key);

Console.WriteLine(ips[index].Value);

}

The Generic KeyValuePair Class 171

The output is:

THE GENERIC KEYVALUEPAIR CLASS

C# provides a small class that allows you to create dictionary-like objects that

store data based on a key. This class is called the KeyValuePair class. Each

object can only hold one key and one value, so its use is limited.

A KeyValuePair object is instantiated like this:

KeyValuePair<string, int> mcmillan =

new KeyValuePair<string, int>("McMillan", 99);

The key and the value are retrieved individually:

Console.Write(mcmillan.Key);

Console.Write(" " + mcmillan.Value);

The KeyValuePair class is better used if you put the objects in an array. The

following program demonstrates how a simple grade book might be imple-

mented:

using System;

using System.Collections.Generic;

using System.Text;

namespace Generics

{

class Program

{

static void Main(string[] args)

172 BUILDING DICTIONARIES

{

KeyValuePair<string, int>[] gradeBook = new

KeyValuePair<string, int>[10];

gradeBook[0] = new KeyValuePair<string,

int>("McMillan", 99);

gradeBook[1] = new KeyValuePair<string,

int>("Ruff", 64);

for (int i = 0; i <= gradeBook.GetUpperBound(0); i++)

if (gradeBook[i].Value != 0)

Console.WriteLine(gradeBook[i].Key + ": " +

gradeBook[i].Value);

Console.Read();

}

}

}

THE SORTEDLIST CLASS

As we mentioned in the Introduction section of this chapter, a SortedList is a

data structure that stores key–value pairs in sorted order based on the key. We

can use this data structure when it is important for the keys to be sorted, such

as in a standard word dictionary, where we expect the words in the dictionary

to be sorted alphabetically. Later in the chapter, we’ll also see how the class

can be used to store a list of single, sorted values.

Using the SortedList Class

We can use the SortedList class in much the same way we used the classes

in the previous sections, since the SortedList class is a specialization of the

DictionaryBase class.

To demonstrate this, the following code creates a SortedList object that

contains three names and IP addresses:

SortedList myips = New SortedList();

myips.Add("Mike", "192.155.12.1");

myips.Add("David", "192.155.12.2");

myips.Add("Bernica", "192.155.12.3");

The name is the key and the IP address is the stored value.

The SortedList Class 173

The generic version of the SortedList class allows you to decide the data

type of both the key and the value:

SortedList<Tkey, TValue>

For this example, we could instantiate myips like this:

SortedList<string, string> myips =

new SortedList<string, string>();

A grade book sorted list might be instantiated as follows:

SortedList<string, int> gradeBook =

new SortedList<string, int>();

We can retrieve the values by using the Item method with a key as the

argument:

Foreach(Object key In myips.Keys)

Console.WriteLine("Name: " & key + "\n" +

"IP: " & myips.Item(key))

This fragment produces the following output:

Alternatively, we can also access this list by referencing the index num-

bers where these values (and keys) are stored internally in the arrays, which

actually store the data. Here’s how:

for(int i = 0; i < myips.Count; i++)

Console.WriteLine("Name: " + myips.GetKey(i) + "\n" +

"IP: " & myips.GetByIndex(i));

174 BUILDING DICTIONARIES

This code fragment produces the exact same sorted list of names and IP

addresses:

A key–value pair can be removed from a SortedList by either specifying a

key or specifying an index number, as in the following code fragment, which

demonstrates both removal methods:

myips.Remove("David");

myips.RemoveAt(1);

If you want to use index-based access into a SortedList but don’t know the

indexes where a particular key or value is stored, you can use the following

methods to determine those values:

int indexDavid = myips.GetIndexOfKey("David");

int indexIPDavid = _

myips.GetIndexOfValue(myips.Item("David"));

The SortedList class contains many other methods and you are encouraged

to explore them via VS.NET’s online documentation.

SUMMARY

The DictionaryBase class is an abstract class used to create custom dictionaries.

A dictionary is a data structure that stores data in key–value pairs, using a

hash table (or sometimes a singly linked list) as the underlying data structure.

The key–value pairs are stored as DictionaryEntry objects and you must use

the Key and Value methods to retrieve the actual values in a DictionaryEntry

object.

The DictionaryBase class is often used when the programmer wants to

create a strongly typed data structure. Normally, data added to a dictionary

Exercises 175

is stored as Object, but with a custom dictionary, the programmer can cut

down on the number of type conversions that must be performed, making the

program more efficient and easier to read.

The SortedList class is a particular type of Dictionary class, one that stores

the key–value pairs in order sorted by the key. You can also retrieve the

values stored in a SortedList by referencing the index number where the value

is stored, much like you do with an array. There is also a SortedDictionary

class in the System.Collections.Generic namespace that works in the same as

the generic SortedList class.

EXERCISES

1. Using the implementation of the IPAddresses class developed in this chap-

ter, write a method that displays the IP addresses stored in the class in

ascending order. Use the method in a program.

2. Write a program that stores names and phone numbers from a text file in a

dictionary, with the name being the key. Write a method that does a reverse

lookup, that is, finds a name given a phone number. Write a Windows

application to test your implementation.

3. Using a dictionary, write a program that displays the number of occurrences

of a word in a sentence. Display a list of all the words and the number of

times they occur in the sentence.

4. Rewrite Exercise 3 to work with letters rather than words.

5. Rewrite Exercise 2 using the SortedList class.

6. The SortedList class is implemented using two internal arrays, one that

stores the keys and one that stores the values. Create your own SortedList

class implementation using this scheme. Your class should include all the

methods discussed in this chapter. Use your class to solve the problem

posed in Exercise 2.

CHAPTER 10

Hashing and the Hashtable
Class

Hashing is a very common technique for storing data in such a way the

data can be inserted and retrieved very quickly. Hashing uses a data structure

called a hash table. Although hash tables provide fast insertion, deletion, and

retrieval, operations that involve searching, such as finding the minimum or

maximum value, are not performed very quickly. For these types of operations,

other data structures are preferred (see, for example, Chapter 12 on binary

search trees).

The .NET Framework library provides a very useful class for working with

hash tables, the Hashtable class. We will examine this class in the chapter, but

we will also discuss how to implement a custom hash table. Building hash

tables is not very difficult and the programming techniques used are well

worth knowing.

AN OVERVIEW OF HASHING

A hash table data structure is designed around an array. The array consists of

elements 0 through some predetermined size, though we can increase the size

later if necessary. Each data item is stored in the array based on some piece

of the data, called the key. To store an element in the hash table, the key is

mapped into a number in the range of 0 to the hash table size using a function

called a hash function.

176

Choosing a Hash Function 177

The ideal goal of the hash function is to store each key in its own cell in

the array. However, because there are an unlimited number of possible keys

and a finite number of array cells, a more realistic goal of the hash function is

to attempt to distribute the keys as evenly as possible among the cells of the

array.

Even with a good hash function, as you have probably guessed by now, it is

possible for two keys to hash to the same value. This is called a collision and

we have to have a strategy for dealing with collisions when they occur. We’ll

discuss this in detail in the following.

The last thing we have to determine is how large to dimension the array

used as the hash table. First, it is recommended that the array size be a prime

number. We will explain why when we examine the different hash functions.

After that, there are several different strategies for determining the proper

array size, all of them based on the technique used to deal with collisions, so

we’ll examine this issue in the following discussion also.

CHOOSING A HASH FUNCTION

Choosing a hash function depends on the data type of the key you are using.

If your key is an integer, the simplest function is to return the key modulo

the size of the array. There are circumstances when this method is not recom-

mended, such as when the keys all end in zero and the array size is 10. This

is one reason why the array size should always be prime. Also, if the keys are

random integers then the hash function should more evenly distribute the

keys.

In many applications, however, the keys are strings. Choosing a hash

function to work with keys is more difficult and should be chosen care-

fully. A simple function that at first glance seems to work well is to add

the ASCII values of the letters in the key. The hash value is that value mod-

ulo the array size. The following program demonstrates how this function

works:

using System;

class chapter10 {

static void Main() {

string[] names = new string[99];

string name;

178 HASHING AND THE HASHTABLE CLASS

string[] someNames = new string[]{"David",

"Jennifer", "Donnie", "Mayo", "Raymond",

"Bernica", "Mike", "Clayton", "Beata", "Michael"};

int hashVal;

for(int i = 0; i < 10; i++) {

name = someNames[i];

hashVal = SimpleHash(name, names);

names[hashVal] = name;

}

ShowDistrib(names);

}

static int SimpleHash(string s, string[] arr) {

int tot = 0;

char[] cname;

cname = s.ToCharArray();

for(int i = 0; i <= cname.GetUpperBound(0); i++)

tot += (int)cname[i];

return tot % arr.GetUpperBound(0);

}

static void ShowDistrib(string[] arr) {

for(int i = 0; i <= arr.GetUpperBound(0); i++)

if (arr[i] != null)

Console.WriteLine(i + " " + arr[i]);

}

}

The output from this program is:

Choosing a Hash Function 179

The showDistrib subroutine shows us where the names are actually placed

into the array by the hash function. As you can see, the distribution is not

particularly even. The names are bunched at the beginning of the array and

at the end.

There is an even bigger problem lurking here, though. Not all of the names

are displayed. Interestingly, if we change the size of the array to a prime

number, even a prime lower than 99, all the names are stored properly. Hence,

one important rule when choosing the size of your array for a hash table (and

when using a hash function such as the one we’re using here) is to choose a

number that is prime.

The size you ultimately choose will depend on your determination of the

number of records stored in the hash table, but a safe number seems to be

10,007 (given that you’re not actually trying to store that many items in your

table). The number 10,007 is prime and it is not so large that enough memory

is used to degrade the performance of your program.

Sticking with the basic idea of using the computed total ASCII value of

the key in the creation of the hash value, this next algorithm provides for a

better distribution in the array. First, let’s look at the code, followed by an

explanation:

static int BetterHash(string s, string[] arr) {

long tot = 0;

char[] cname;

cname = s.ToCharArray();

for(int i = 0; i <= cname.GetUpperBound(0); i++)

tot += 37 * tot + (int)cname[i];

tot = tot % arr.GetUpperBound(0);

if (tot < 0)

tot += arr.GetUpperBound(0);

return (int)tot;

}

This function uses Horner’s rule to computer the polynomial function (of 37).

See (Weiss 1999) for more information on this hash function.

Now let’s look at the distribution of the keys in the hash table using this

new function:

180 HASHING AND THE HASHTABLE CLASS

These keys are more evenly distributed though it’s hard to tell with such a

small data set.

SEARCHING FOR DATA IN A HASH TABLE

To search for data in a hash table, we need to compute the hash value of the

key and then access that element in the array. It is that simple. Here’s the

function:

static bool InHash(string s, string[] arr) {

int hval = BetterHash(s, arr);

if (arr[hval] == s)

return true;

else

return false;

}

This function returns True if the item is in the hash table and False oth-

erwise. We don’t even need to compare the time this function runs versus

a sequential search of the array since this function clearly runs in less time,

unless of course the data item is somewhere close to the beginning of the

array.

HANDLING COLLISIONS

When working with hash tables, it is inevitable that you will encounter situa-

tions where the hash value of a key works out to a value that is already storing

another key. This is called a collision and there are several techniques you

Handling Collisions 181

can use when a collision occurs. These techniques include bucket hashing,

open addressing, and double hashing (among others). In this section, we will

briefly cover each of these techniques.

Bucket Hashing

When we originally defined a hash table, we stated that it is preferred that

only one data value resides in a hash table element. This works great if there

are no collisions, but if a hash function returns the same value for two data

items, we have a problem.

One solution to the collision problem is to implement the hash table using

buckets. A bucket is a simple data structure stored in a hash table element that

can store multiple items. In most implementations, this data structure is an

array, but in our implementation we’ll make use of an arraylist, which will

allow us not to worry about running out of space and to allocate more space.

In the end, this will make our implementation more efficient.

To insert an item, we first use the hash function to determine which arraylist

to store the item. Then we check to see if the item is already in the arraylist. If

it is we do nothing, if it’s not, then we call the Add method to insert the item

into the arraylist.

To remove an item from a hash table, we again first determine the hash

value of the item to be removed and go to that arraylist. We then check to

make sure the item is in the arraylist, and if it is, we remove it.

Here’s the code for a BucketHash class that includes a Hash function, an

Add method, and a Remove method:

public class BucketHash {

private const int SIZE = 101;

ArrayList[] data;

public BucketHash() {

data = new ArrayList[SIZE];

for(int i = 0; i <= SIZE-1; i++)

data[i] = new ArrayList(4);

}

public int Hash(string s) {

long tot = 0;

182 HASHING AND THE HASHTABLE CLASS

char[] charray;

charray = s.ToCharArray();

for(int i = 0; i <= s.Length-1; i++)

tot += 37 ∗ tot + (int)charray[i];

tot = tot % data.GetUpperBound(0);

if (tot < 0)

tot += data.GetUpperBound(0);

return (int)tot;

}

public void Insert(string item) {

int hash_value;

hash_value = Hash(value);

if (data[hash_value].Contains(item))

data[hash_value].Add(item);

}

public void Remove(string item) {

int hash_value;

hash_value = Hash(item);

if (data[hash_value].Contains(item))

data[hash_value].Remove(item);

}

}

When using bucket hashing, the most important thing you can do is

keep the number of arraylist elements used as low as possible. This mini-

mizes the extra work that has to be done when adding items to or remov-

ing items from the hash table. In the preceding code, we minimize the size

of the arraylist by setting the initial capacity of each arraylist to 1 in the

constructor call. Once we have a collision, the arraylist capacity becomes

2, and then the capacity continues to double every time the arraylist fills

up. With a good hash function, though, the arraylist shouldn’t get too

large.

The ratio of the number of elements in the hash table to the table size is

called the load factor. Studies have shown that hash table performance is best

when the load factor is 1.0, or when the table size exactly equals the number

of elements.

Handling Collisions 183

Open Addressing

Separate chaining decreases the performance of your hash table by using

arraylists. An alternative to separate chaining for avoiding collisions is open

addressing. An open addressing function looks for an empty cell in the hash

table array to place an item. If the first cell tried is full, the next empty cell

is tried, and so on until an empty cell is eventually found. We will look at

two different strategies for open addressing in this section: linear probing and

quadratic probing.

Linear probing uses a linear function to determine the array cell to try for

an insertion. This means that cells will be tried sequentially until an empty

cell is found. The problem with linear probing is that data elements will tend

to cluster in adjacent cells in the array, making successive probes for empty

cells longer and less efficient.

Quadratic probing eliminates the clustering problem. A quadratic function

is used to determine which cell to attempt. An example of such a function is:

2 * collNumber - 1

where collNumber is the number of collisions that have occurred during the

current probe. An interesting property of quadratic probing is that an empty

cell is guaranteed to be found if the hash table is less than half empty.

Double Hashing

This simple collision-resolution strategy is exactly what it says it is—if a

collision is found, the hash function is applied a second time and then probe

at the distance sequence hash(item), 2hash(item), 4hash(item), etc. until an

empty cell is found.

To make this probing technique work correctly, a few conditions must be

met. First, the hash function chosen must not ever evaluate to zero, which

would lead to disastrous results (since multiplying by zero produces zero).

Second, the table size must be prime. If the size isn’t prime, then all the array

cells will not be probed, again leading to chaotic results.

Double hashing is an interesting collision resolution strategy, but it has been

shown in practice that quadratic probing usually leads to better performance.

We are now finished examining custom hash table implementations. For

most applications using C#, you are better off using the built-in Hashtable

184 HASHING AND THE HASHTABLE CLASS

class that is part of the .NET Framework library. We begin our discussion of

this class in the next section.

THE HASHTABLE CLASS

The Hashtable class is a special type of Dictionary object, storing key–value

pairs, where the values are stored based on the hash code derived from the

key. You can specify a hash function or use the one built in (we’ll discuss it

later) for the data type of the key. The Hashtable class is very efficient and

should be used in place of custom implementations whenever possible.

The strategy the class uses to avoid collisions is the concept of a bucket.

A bucket is a virtual grouping of objects together that have the same hash

code, much like we used an ArrayList to handle collisions when we discussed

separate chaining. If two keys have the same hash code, they are placed in

the same bucket. Otherwise, each key with a unique hash code is placed in

its own bucket.

The number of buckets used in a Hashtable objects is called the load factor.

The load factor is the ratio of the elements to the number of buckets. Initially,

the factor is set to 1.0. When the actual factor reaches the initial factor, the

load factor is increased to the smallest prime number that is twice the current

number of buckets. The load factor is important because the smaller the load

factor, the better the performance of the Hashtable object.

Instantiating and Adding Data to a Hashtable Object

The Hashtable class is part of the System.Collections namespace, so you must

import System.Collections at the beginning of your program.

A Hashtable object can be instantiated in one of three ways (actually there

are several more, including different types of copy constructors, but we stick

to the three most common constructors here). You can instantiate the hash

table with an initial capacity or by using the default capacity. You can also

specify both the initial capacity and the initial load factor. The following code

demonstrates how to use these three constructors:

Hashtable symbols = new Hashtable();

HashTable symbols = new Hashtable(50);

HashTable symbols = new Hashtable(25, 3.0);

The Hashtable Class 185

The first line creates a hash table with the default capacity and the default load

factor. The second line creates a hash table with a capacity of 50 elements and

the default load factor. The third line creates a hash table with an initial

capacity of 25 elements and a load factor of 3.0.

Key–value pairs are entered into a hash table using the Add method. This

method takes two arguments: the key and the value associated with the key.

The key is added to the hash table after computing its hash value. Here is

some example code:

Hashtable symbols = new Hashtable(25);

symbols.Add("salary", 100000);

symbols.Add("name", "David Durr");

symbols.Add("age", 43);

symbols.Add("dept", "Information Technology");

You can also add elements to a hash table using an indexer, which we discuss

more completely later in this chapter. To do this, you write an assignment

statement that assigns a value to the key specified as the index (much like an

array index). If the key doesn’t already exist, a new hash element is entered

into the table; if the key already exists, the existing value is overwritten by

the new value. Here are some examples:

Symbols["sex"] = "Male";

Symbols["age"] = 44;

The first line shows how to create a new key–value pair using the Item method,

whereas the second line demonstrates that you can overwrite the current value

associated with an existing key.

Retrieving the Keys and the Values Separately
From a Hash Table

The Hashtable class has two very useful methods for retrieving the keys and

values separately from a hash table: Keys and Values. These methods create

an Enumerator object that allows you to use a For Each loop, or some other

technique, to examine the keys and the values.

186 HASHING AND THE HASHTABLE CLASS

The following program demonstrates how these methods work:

using System;

using System.Collections;

class chapter10 {

static void Main() {

Hashtable symbols = new Hashtable(25);

symbols.Add("salary", 100000);

symbols.Add("name", "David Durr");

symbols.Add("age", 45);

symbols.Add("dept", "Information Technology");

symbols["sex"] = "Male";

Console.WriteLine("The keys are: ");

foreach (Object key in symbols.Keys)

Console.WriteLine(key);

Console.WriteLine();

Console.WriteLine("The values are: ");

foreach (Object value in symbols.Values)

Console.WriteLine(value);

}

}

Retrieving a Value Based on the Key

Retrieving a value using its associated key can be accomplished using an

indexer, which works just like an indexer for an array. A key is passed in as

the index value, and the value associated with the key is returned, unless the

key doesn’t exist, in which a null is returned.

The following short code segment demonstrates how this technique works:

Object value = symbols.Item["name"];

Console.WriteLine("The variable name's value is: " +

value.ToString());

The value returned is “David Durr”.

We can use an indexer along with the Keys method to retrieve all the data

stored in a hash table:

using System;

using System.Collections;

The Hashtable Class 187

class chapter10 {

static void Main() {

Hashtable symbols = new Hashtable(25);

symbols.Add("salary", 100000);

symbols.Add("name", "David Durr");

symbols.Add("age", 45);

symbols.Add("dept", "Information Technology");

symbols["sex"] = "Male";

Console.WriteLine();

Console.WriteLine("Hash table dump - ");

Console.WriteLine();

foreach (Object key in symbols.Keys)

Console.WriteLine(key.ToString() + ": " +

symbols[key].ToString());

}

}

The output is:

Utility Methods of the Hashtable Class

There are several methods in the Hashtable class that help you be more pro-

ductive with Hashtable objects. In this section, we examine several of them,

including methods for determining the number of elements in a hash table,

clearing the contents of a hash table, determining if a specified key (and value)

is contained in a hash table, removing elements from a hash table, and copying

the elements of a hash table to an array.

188 HASHING AND THE HASHTABLE CLASS

The number of elements in a hash table is stored in the Count property,

which returns an integer:

int numElements;

numElements = symbols.Count;

We can immediately remove all the elements of a hash table using the Clear

method:

symbols.Clear();

To remove a single element from a hash table, you can use the Remove

method. This method takes a single argument, a key, and the method removes

both the specified key and its associated value. Here’s an example:

symbols.Remove("sex");

foreach(Object key In symbols.Keys)

Console.WriteLine(key.ToString() + ": " +

symbols[key].ToString());

Before you remove an element from a hash table, you may want to check to

see if either the key or the value is in the table. We can determine this infor-

mation with the ContainsKey method and the ContainsValue method. The

following code fragment demonstrates how to use the ContainsKey method:

string aKey;

Console.Write("Enter a key to remove: ");

aKey = Console.ReadLine();

if (symbols.ContainsKey(aKey))

symbols.Remove(aKey);

Using this method ensures that the key–value pair to remove exists in the

hash table. The ContainsValue method works similarly with values instead of

keys.

A Hashtable Application: Computer Terms Glossary 189

A HASHTABLE APPLICATION: COMPUTER TERMS GLOSSARY

One common use of a hash table is to build a glossary, or dictionary, of terms.

In this section, we demonstrate one way to use a hash table for just such a

use—a computer terms glossary.

The program works by first reading in a set of terms and definitions from a

text file. This process is coded in the BuildGlossary subroutine. The structure

of the text file is: word,definition, with the comma being the delimiter between

a word and the definition. Each word in this glossary is a single word, but the

glossary could easily work with phrases instead. That’s why a comma is used

as the delimiter, rather than a space. Also, this structure allows us to use the

word as the key, which is the proper way to build this hash table.

Another subroutine, DisplayWords, displays the words in a list box so the

user can pick one to get a definition. Since the words are the keys, we can use

the Keys method to return just the words from the hash table. The user can

then see which words have definitions.

To retrieve a definition, the user simply clicks on a word in the list box.

The definition is retrieved using the Item method and is displayed in the text

box.

Here’s the code:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.IO;

namespace Glossary

{

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.ListBox lstWords;

private System.Windows.Forms.TextBox txtDefinition;

private Hashtable glossary = new Hashtable();

private System.ComponentModel.Container

components = null;

public Form1()

190 HASHING AND THE HASHTABLE CLASS

{

InitializeComponent();

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

components.Dispose();

}

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

[STAThread]

static void Main()

{

Application.Run(new Form1());

}

private void BuildGlossary(Hashtable g)

{

StreamReader inFile;

string line;

string[] words;

inFile = File.OpenText("c:\\words.txt");

char[] delimiter = new char[]{','};

while (inFile.Peek() != -1)

{

line = inFile.ReadLine();

words = line.Split(delimiter);

g.Add(words[0], words[1]);

}

inFile.Close();

}

private void DisplayWords(Hashtable g)

A Hashtable Application: Computer Terms Glossary 191

{

Object[] words = new Object[100];

g.Keys.CopyTo(words, 0);

for(int i = 0; i <= words.GetUpperBound(0); i++)

if (!(words[i] == null))

lstWords.Items.Add((words[i]));

}

private void Form1_Load(object sender,

System.EventArgs e)

{

BuildGlossary(glossary);

DisplayWords(glossary);

}

private void lstWords_SelectedIndexChanged

(object sender, System.EventArgs e)

{

Object word;

word = lstWords.SelectedItem;

txtDefinition.Text = glossary[word].ToString();

}

}

}

The text file looks like this:

adder,an electronic circuit that performs an addition operation on binary

values

addressability,the number of bits stored in each addressable location in

memory

bit,short for binary digit

block,a logical group of zero or more program statements

call,the point at which the computer begins following the instructions in

a subprogram

compiler,a program that translates a high-level program into machine code

data,information in a form a computer can use

database,a structured set of data

. . .

192 HASHING AND THE HASHTABLE CLASS

Here’s how the program looks when it runs:

If a word is entered that is not in the glossary, the Item method returns Nothing.

There is a test for Nothing in the GetDefinition subroutine so that the string

“not found” is displayed if the word entered is not in the hash table.

SUMMARY

A hash table is a very efficient data structure for storing key–value pairs. The

implementation of a hash table is mostly straightforward, with the tricky part

having to do with choosing a strategy for collisions. This chapter discussed

several techniques for handling collisions.

For most C# applications, there is no reason to build a custom hash table,

when the Hashtable class of the .NET Framework library works quite well.

You can specify your own hash function for the class or you can let the class

calculate hash values.

Exercises 193

EXERCISES

1. Rewrite the computer terms glossary application using the custom-

designed Hash class developed in this chapter. Experiment with different

hash functions and collision-resolution strategies.

2. Using the Hashtable class, write a spelling checker program that reads

through a text file and checks for spelling errors. You will, of course, have

to limit your dictionary to several common words.

3. Create a new Hash class that uses an arraylist instead of an array for the

hash table. Test your implementation by rewriting (yet again) the computer

terms glossary application.

CHAPTER 11

Linked Lists

For many applications, data are best stored as lists, and lists occur naturally

in day-to-day life: to-do lists, grocery lists, and top-ten lists. In this chapter, we

explore one particular type of list, the linked list. Although the .NET Frame-

work class library contains several list-based collection classes, the linked

list is not among them. The chapter starts with an explanation of why we

need linked lists, then we explore two different implementations of the data

structure—object-based linked lists and array-based linked lists. The chapter

finishes up with several examples of how linked lists can be used for solving

computer programming problems you may run across.

THE PROBLEM WITH ARRAYS

The array is the natural data structure to use when working with lists. Arrays

provide fast access to stored items and are easy to loop through. And, of

course, the array is already part of the language and you don’t have to use

extra memory and processing time using a user-defined data structure.

But as we’ve seen, the array is not the perfect data structure. Searching

for an item in an unordered array is slow because you have to possibly visit

every element in the array before finding the element you’re searching for.

Ordered (sorted) arrays are much more efficient for searching, but insertions

194

Linked Lists Defined 195

Milk Bread Eggs Bacon Nothing

FIGURE 11.1. An Example Linked List.

and deletions are slow because you have to shift the elements up or down to

either make space for an insertion or remove space with a deletion. Not

to mention that in an ordered array, you have to search for the proper space

to insert an element into the array.

When you determine that the operations performed on an array are too

slow for practical use, you can consider using the linked list as an alternative.

The linked list can be used in almost every situation where an array is used,

except if you need random access to the items in the list, when an array is

probably the best choice.

LINKED LISTS DEFINED

A linked list is a collection of class objects called nodes. Each node is linked to

its successor node in the list using a reference to the successor node. A node

is made up of a field for storing data and the field for the node reference. The

reference to another node is called a link. An example linked list is shown

in Figure 11.1.

A major difference between an array and a linked list is that whereas the

elements in an array are referenced by position (the index), the elements of

a linked list are referenced by their relationship to the other elements of the

array. In Figure 11.1, we say that “Bread” follows “Milk”, not that “Bread” is

in the second position. Moving through a linked list involves following the

links from the beginning node to the ending node.

Another thing to notice in Figure 11.1 is that we mark the end of a linked

list by pointing to the value null. Since we are working with class objects in

memory, we use the null object to denote the end of the list.

Marking the beginning of a list can be a problem in some cases. It is common

in many linked list implementations to include a special node, called the

“header”, to denote the beginning of a linked list. The linked list of Fig-

ure 11.1 is redesigned with a header node in Figure 11.2.

Bacon NothingHeader Milk Bread Eggs

FIGURE 11.2. A Linked List with a Header Node.

196 LINKED LISTS

Bacon NothingHeader Milk Bread Eggs

Cookies

FIGURE 11.3. Inserting Cookies.

Insertion becomes a very efficient task when using a linked list. All that

is involved is changing the link of the node previous to the inserted node to

point to the inserted node, and setting the link of the new node to point to

the node the previous node pointed to before the insertion. In Figure 11.3,

the item “Cookies” is added to the linked list after “Eggs”.

Removing an item from a linked list is just as easy. We simply redirect the

link of the node before the deleted node to point to the node the deleted

node points to and set the deleted node’s link to null. The diagram of this

operation is shown in Figure 11.4, where we remove “Bacon” from the linked

list.

There are other methods we can, and will, implement in the LinkedList

class, but insertion and deletion are the two methods that define why we use

linked lists over arrays.

AN OBJECT-ORIENTED LINKED LIST DESIGN

Our design of a linked list will involve at least two classes. We’ll create a Node

class and instantiate a Node object each time we add a node to the list. The

nodes in the list are connected via references to other nodes. These references

are set using methods created in a separate LinkedList class. Let’s start by

looking at the design of the Node class.

The Node Class

A node is made up of two data members: Element, which stores the node’s

data; and Link, which stores a reference to the next node in the list. We’ll use

Object for the data type of Element, just so we don’t have to worry about what

Bacon NothingHeader Milk Bread Eggs Cookies

FIGURE 11.4. Removing Bacon.

An Object-Oriented Linked List Design 197

kind of data we store in the list. The data type for Link is Node, which seems

strange but actually makes perfect sense. Since we want the link to point to

the next node, and we use a reference to make the link, we have to assign a

Node type to the link member.

To finish up the definition of the Node class, we need at least two construc-

tor methods. We definitely want a default constructor that creates an empty

Node, with both the Element and Link members set to null. We also need a

parameterized constructor that assigns data to the Element member and sets

the Link member to null.

Here’s the code for the Node class:

public class Node {

public Object Element;

public Node Link;

public Node() {

Element = null;

Link = null;

}

public Node(Object theElement) {

Element = theElement;

Link = null;

}

}

The LinkedList Class

The LinkedList class is used to create the linkage for the nodes of our linked

list. The class includes several methods for adding nodes to the list, removing

nodes from the list, traversing the list, and finding a node in the list. We also

need a constructor method that instantiates a list. The only data member in

the class is the header node.

public class LinkedList {

protected Node header;

public LinkedList() {

198 LINKED LISTS

header = new Node("header");

}

. . .

}

The header node starts out with its Link field set to null. When we add

the first node to the list, the header node’s Link field is assigned a refer-

ence to the new node, and the new node’s Link field is assigned the null

value.

The first method we’ll examine is the Insert method, which we use to put

a node into our linked list. To insert a node into the list, you have to specify

the node you want to insert before or after. This is necessary to adjust all the

necessary links in the list. We’ll choose to insert a new node after an existing

node in the list.

To insert a new node after an existing node, we have to first find the “after”

node. To do this, we create a Private method, Find, that searches through the

Element field of each node until a match is found.

private Node Find(Object item) {

Node current = new Node();

current = header;

while(current.header != item)

current = current.Link;

return current;

}

This method demonstrates how we move through a linked list. First, we

instantiate a Node object, current, and assign it as the header node. Then

we check to see if the value in the node’s Element field equals the value we’re

searching for. If not, we move to the next node by assigning the node in the

Link field of current as the new value of current.

Once we’ve found the “after” node, the next step is to set the new node’s

Link field to the Link field of the “after” node, and then set the “after” node’s

Link field to a reference to the new node. Here’s how it’s done:

public void Insert(Object newItem, Object after) {

Node current = new Node();

Node newNode = new Node(newItem);

current = Find(after);

An Object-Oriented Linked List Design 199

newNode.Link = current.Link;

current.Link = newNode;

}

The next linked list operation we explore is Remove. To remove a node

from a linked list, we simply have to change the link of the node that points

to the removed node to point to the node after the removed node.

Since we need to find the node before the node we want to remove, we’ll

define a method, FindPrevious, that does this. This method walks down the

list, stopping at each node and looking ahead to the next node to see if that

node’s Element field holds the item we want to remove.

private Node FindPrevious(Object n) {

Node current = header;

while(!(current.Link == null) && (current.Link.

Element != n))

current = current.Link;

return current;

}

Now we’re ready to see how the code for the Remove method looks:

public void Remove(Object n)

Node p = FindPrevious(n);

if (!(p.Link == null))

p.Link = p.Link.Link;

}

The Remove method removes the first occurrence of an item in a linked list

only. You will also notice that if the item is not in the list, nothing happens.

The last method we’ll define in this section is PrintList, which traverses the

linked list and displays the Element fields of each node in the list.

public void PrintList() {

Node current = new Node();

current = header;

while (!(current.Link == null)) {

Console.WriteLine(current.Link.Element);

current = current.Link;

}

}

200 LINKED LISTS

LINKED LIST DESIGN MODIFICATIONS

There are several modifications we can make to our linked list design in order

to better solve certain problems. Two of the most common modifications are

the doubly linked list and the circularly linked list. A doubly linked list makes

it easier to move backward through a linked list and to remove a node from the

list. A circularly linked list is convenient for applications that move more than

once through a list. We’ll look at both of these modifications in this section.

Finally, we’ll look at a modification to the LinkedLast class that is common

only to object-oriented implementations of a linked list—an Iterator class for

denoting position in the list.

The Doubly Linked List

Although traversing a linked list from the first node in the list to the last node

is very straightforward, it is not as easy to traverse a linked list backward. We

can make this procedure much easier if we add a field to our Node class that

stores the link to the previous node. When we insert a node into the list, we’ll

have to perform more operations in order to assign data to the new field, but

we gain efficiency when we have to remove a node from the list, since we

don’t have to look for the previous node. Figure 11.5 illustrates graphically

how a doubly linked list works.

We first need to modify the Node class to add an extra link to the class.

To distinguish between the two links, we’ll call the link to the next node the

FLink, and the link to the previous node the BLink. These fields are set to

Nothing when a Node is instantiated. Here’s the code:

public class Node {

public Object Element;

public Node Flink;

public Node Blink;

public Node() {

Element = null;

Header

Points to Nothing

David Mike Raymond Nothing

FIGURE 11.5. A Doubly Linked List.

Linked List Design Modifications 201

Flink = null;

Blink = null;

}

public Node(Object theElement) {

Element = theElement;

Flink = null;

Blink = null;

}

}

The Insertion method is similar to the same method in a singularly linked

list, except we have to set the new node’s back link to point to the previous

node.

public void Insert(Object newItem, Object after) {

Node current = new Node();

Node newNode = new Node(newItem);

current = Find(after);

newNode.Flink = current.Link;

newNode.Blink = current;

current.Flink = newNode;

}

The Remove method for a doubly linked list is much simpler to write than

for a singularly linked list. We first need to find the node in the list; then we

set the node’s back link property to point to the node pointed to in the deleted

node’s forward link. Then we need to redirect the back link of the link the

deleted node points to and point it to the node before the deleted node.

Figure 11.6 illustrates a special case of deleting a node from a doubly linked

list when the node to be deleted is the last node in the list (other than the

Nothing node).

Header

Points to Nothing Nothing

David Mike Raymond Nothing

FIGURE 11.6. Removing a Node From a Doubly Linked.

202 LINKED LISTS

The code for the Remove method of a doubly linked list is as follows.

public void Remove(Object n) {

Node p = Find(n);

if (!(p.Flink == null)) {

p.Blink.Flink = p.Flink;

p.Flink.Blink = p.Blink;

p.Flink = null;

p.Blink = null;

}

}

We’ll end this section on implementing doubly linked lists by writing a

method that prints the elements of a linked list in reverse order. In a singularly

linked list, this could be somewhat difficult, but with a doubly linked list, the

method is easy to write.

First, we need a method that finds the last node in the list. This is just a

matter of following each node’s forward link until we reach a link that points

to null. This method, called FindLast, is defined as follows:

private Node FindLast() {

Node current = new Node();

current = header;

while(!(current.Flink == null))

current = current.Flink;

return current;

}

Once we find the last node in the list, to print the list in reverse order we

just follow the backward link until we get to a link that points to null, which

indicates we’re at the header node. Here’s the code:

public void PrintReverse() {

Node current = new Node();

current = FindLast();

while (!(current.Blink == null)) {

Console.WriteLine(current.Element);

current = current.Blink;

}

}

Linked List Design Modifications 203

Header David Mike Raymond

FIGURE 11.7. A Circularly Linked List.

The Circularly Linked List

A circularly linked list is a list where the last node points back to the first

node (which may be a header node). Figure 11.7 illustrates how a circularly

linked list works.

This type of linked list is used in certain applications that require the last

node pointing back to the first node (or the header). Many programmers

choose to use circularly linked lists when a linked list is called for.

The only real change we have to make to our code is to point the Header

node to itself when we instantiate a new linked list. If we do this, every time

we add a new node the last node will point to the Header, since that link is

propagated from node to node.

The code for a circularly linked list is shown. For clarity, we show the

complete class (and not just to pad book page length):

public class Node {

public Object Element;

public Node Flink;

public Node Blink;

public Node() {

Element = null;

Flink = null;

Blink = null;

}

public Node(Object theElement) {

Element = theElement;

Flink = null;

Blink = null;

}

}

public class LinkedList {

protected Node current;

204 LINKED LISTS

protected Node header;

private int count;

public LinkedList() {

count = 0;

header = new Node("header");

header.Link = header;

}

public bool IsEmpty() {

return (header.Link == null);

}

public void MakeEmpty() {

header.Link = null;

}

public void PrintList() {

Node current = new Node();

current = header;

while (!(current.Link.Element = "header")) {

Console.WriteLine(current.Link.Element);

current = current.Link;

}

}

private Node FindPrevious(Object n) {

Node current = header;

while (!(current.Link == null) && current.Link.

Element != n)

current = current.Link;

return current;

}

private Node Find(Object n) {

Node current = new Node();

current = header.Link;

while (current.Element != n)

current = current.Link;

return current;

}

Linked List Design Modifications 205

public void Remove(Object n) {

Node p = FindPrevious(n);

if (!(p.Link == null)

p.Link = p.Link.Link;

count--;

}

public void Insert(Object n1, n2) {

Node current = new Node();

Node newnode = new Node(n1);

current = Find(n2);

newnode.Link = current.Link;

current.Link = newnode;

count++;

}

public void InsertFirst(Object n) {

Node current = new Node(n);

current.Link = header;

header.Link = current;

count++;

}

public Node Move(int n) {

Node current = header.Link;

Node temp;

for(int i = 0, i <= n; i++)

current = current.Link;

if (current.Element = "header")

current = current.Link;

temp = current;

return temp;

}

}

In the .NET Framework Library, the ArrayList data structure is imple-

mented using a circularly linked list. There are also many problems that can

be solved using a circularly linked list. We look at one typical problem in the

exercises.

206 LINKED LISTS

USING AN ITERATOR CLASS

One problem the LinkedList class has is that you can’t refer to two positions

in the linked list at the same time. We can refer to any one position in the

list (the current node, the previous node, etc.), but if we want to specify

two or more positions, such as if we want to remove a range of nodes from

the list, we’ll need some other mechanism. This mechanism is an iterator

class.

The iterator class consists of three data fields: a field that stores the linked

list, a field that stores the current node, and a field that stores the current

node. The constructor method is passed a linked list object, and the method

sets the current field to the header node of the list passed into the method.

Let’s look at our definition of the class so far:

public class ListIter {

private Node current;

private Node previous;

LinkedList theList;

public ListIter(LinkedList list) {

theList = list;

current = theList.getFirst();

previous = null;

}

The first thing we want an Iterator class to do is allow us to move from

node to node through the list. The method nextLink does this:

public void NextLink() {

previous = current;

current = current.link;

}

Notice that in addition to establishing a new current position, the previous

node is also set to the node that is current before the method has finished

executing. Keeping track of the previous node in addition to the current node

makes insertion and removal easier to perform.

Using An Iterator Class 207

The getCurrent method returns the node pointed to by the iterator:

public Node GetCurrent()

return current;

}

Two insertion methods are built in the Iterator class: InsertBefore and

InsertAfter. InsertBefore inserts a new node before the current node;

InsertAfter inserts a new node after the current node. Let’s look at the Insert-

Before method first.

The first thing we have to do when inserting a new node before the current

object is check to see if we are at the beginning of the list. If we are, then we

can’t insert a node before the header node, so we throw an exception. This

exception is defined below. Otherwise, we set the new node’s Link field to the

Link field of the previous node, set the previous node’s Link field to the new

node, and reset the current position to the new node. Here’s the code:

public void InsertBefore(Object theElement) {

Node newNode = new Node(theElement);

if (current == header)

throw new InsertBeforeHeaderException();

else {

newNode.Link = previous.Link;

previous.Link = newNode;

current = newNode;

}

}

The InsertBeforeHeader Exception class definition is:

public class InsertBeforeHeaderException {

public InsertBeforeHeaderException() {

base("Can't insert before the header node.");

}

}

The InsertAfter method in the Iterator class is much simpler than the

method we wrote in the LinkedList class. Since we already know the position

208 LINKED LISTS

of the current node, the method just needs to set the proper links and set the

current node to the next node.

public void InsertAfter(Object theElement) {

Node newnode = new Node(theElement);

newNode.Link = current.Link;

current.Link = newnode;

NextLink();

}

Removing a node from a linked list is extremely easy using an Iterator

class. The method simply sets the Link field of the previous node to the node

pointed to by the current node’s Link field:

public void Remove() {

prevous.Link = current.Link;

}

Other methods we need in an Iterator class include methods to reset the

iterator to the header node (and the previous node to null) and a method to

test if we’re at the end of the list. These methods are shown as follows.

public void Reset()

current = theList.getFirst();

previous = null;

}

public bool AtEnd() {

return (current.Link == null);

}

The New LinkedList Class

With the Iterator class doing a lot of the work now, we can slim down the

LinkedList class quite a bit. Of course, we still need a header field and a

constructor method to instantiate the list.

public class LinkedList() {

private Node header;

public LinkedList() {

Using An Iterator Class 209

header = new Node("header");

}

public bool IsEmpty() {

return (header.Link == null);

}

public Node GetFirst() {

return header;

}

public void ShowList() {

Node current = header.Link;

while (!(current == null)) {

Console.WriteLine(current.Element);

current = current.Link;

}

}

}

Demonstrating the Iterator Class

Using the Iterator class, it’s easy to write an interactive program to move

through a linked list. This also gives us a chance to put all the code for both

the Iterator class and the LinkedList class in one place.

using System;

public class Node

{

public Object Element;

public Node Link;

public Node()

{

Element = null;

Link = null;

}

public Node(Object theElement)

{

210 LINKED LISTS

Element = theElement;

Link = null;

}

}

public class InsertBeforeHeaderException : System.

ApplicationException

{

public InsertBeforeHeaderException(string message) :

base(message)

{

}

}

public class LinkedList {

private Node header;

public LinkedList() {

header = new Node("header");

}

public bool IsEmpty() {

return (header.Link == null);

}

public Node GetFirst() {

return header;

}

public void ShowList() {

Node current = header.Link;

while (!(current == null)) {

Console.WriteLine(current.Element);

current = current.Link;

}

}

}

public class ListIter {

private Node current;

Using An Iterator Class 211

private Node previous;

LinkedList theList;

public ListIter(LinkedList list) {

theList = list;

current = theList.GetFirst();

previous = null;

}

public void NextLink() {

previous = current;

current = current.Link;

}

public Node GetCurrent() {

return current;

}

public void InsertBefore(Object theElement) {

Node newNode = new Node(theElement);

if (previous.Link == null)

throw new InsertBeforeHeaderException

("Can't insert here.");

else {

newNode.Link = previous.Link;

previous.Link = newNode;

current = newNode;

}

}

public void InsertAfter(Object theElement) {

Node newNode = new Node(theElement);

newNode.Link = current.Link;

current.Link = newNode;

NextLink();

}

public void Remove() {

previous.Link = current.Link;

}

public void Reset() {

212 LINKED LISTS

current = theList.GetFirst();

previous = null;

}

public bool AtEnd() {

return (current.Link == null);

}

}

class chapter11 {

static void Main() {

LinkedList MyList = new LinkedList();

ListIter iter = new ListIter(MyList);

string choice, value;

try

{

iter.InsertAfter("David");

iter.InsertAfter("Mike");

iter.InsertAfter("Raymond");

iter.InsertAfter("Bernica");

iter.InsertAfter("Jennifer");

iter.InsertBefore("Donnie");

iter.InsertAfter("Michael");

iter.InsertBefore("Terrill");

iter.InsertBefore("Mayo");

iter.InsertBefore("Clayton");

while (true)

{

Console.WriteLine("(n) Move to next node");

Console.WriteLine("(g)Get value in current node");

Console.WriteLine("(r) Reset iterator");

Console.WriteLine("(s) Show complete list");

Console.WriteLine("(a) Insert after");

Console.WriteLine("(b) Insert before");

Console.WriteLine("(c) Clear the screen");

Console.WriteLine("(x) Exit");

Console.WriteLine();

Console.Write("Enter your choice: ");

choice = Console.ReadLine();

choice = choice.ToLower();

Using An Iterator Class 213

char[] onechar = choice.ToCharArray();

switch(onechar[0])

{

case 'n' :

if (!(MyList.IsEmpty()) &&

(!(iter.AtEnd())))

iter.NextLink();

else

Console.WriteLine("Can' move to

next link.");

break;

case 'g' :

if (!(MyList.IsEmpty()))

Console.WriteLine("Element: " +

iter.GetCurrent().Element);

else

Console.WriteLine ("List is empty.");

break;

case 'r' :

iter.Reset();

break;

case 's' :

if (!(MyList.IsEmpty()))

MyList.ShowList();

else

Console.WriteLine("List is empty.");

break;

case 'a' :

Console.WriteLine();

Console.Write("Enter value to insert:");

value = Console.ReadLine();

iter.InsertAfter(value);

break;

case 'b' :

Console.WriteLine();

Console.Write("Enter value to insert:");

value = Console.ReadLine();

iter.InsertBefore(value);

break;

214 LINKED LISTS

case 'c' :

// clear the screen

break;

case 'x' :

// end of program

break;

}

}

}

catch (InsertBeforeHeaderException e)

{

Console.WriteLine(e.Message);

}

}

}

Yes, this program is a Console application and doesn’t use a GUI. You will

get a chance to remedy this in the exercises, however.

THE GENERIC LINKED LIST CLASS AND THE GENERIC NODE CLASS

The System.Collections.Generic namespace provides two generic classes for

building linked lists: the LinkedList class and the LinkedListNode class. The

Node class provides two data fields for storing a value and a link, whereas the

LinkedList class implements a doubly linked list with methods for inserting

before a node as well as inserting after a node. The class also provides method

for removing nodes, finding the first and last nodes in the linked list, as well

as other useful methods.

A Generic Linked List Example

Like other generic classes, LinkedListNode and LinkedList require a data type

placeholder when instantiating objects. Here are some examples:

LinkedListNode<string> node1 = new LinkedListNode<string>_

(“Raymond");

The Generic Linked List Class and the Generic Node Class 215

LinkedList<string> names = new LinkedList<string>();

From here, it’s just a matter of using the classes to build and use a linked

list. A simple example demonstrates how easy it is to use these classes:

using System;

using System.Collections.Generic;

using System.Text;

class Program {

static void Main(string[] args) {

LinkedListNode<string> node = new

LinkedListNode<string>("Mike");

LinkedList<string> names = new LinkedList<string>();

names.AddFirst(node);

LinkedListNode<string> node1 = new

LinkedListNode<string>

("David");

names.AddAfter(node, node1);

LinkedListNode<string> node2 = new

LinkedListNode<string>

("Raymond");

names.AddAfter(node1, node2);

LinkedListNode<string> node3 = new LinkedListNode

<string>(null);

LinkedListNode<string> aNode = names.First;

while(aNode != null) {

Console.WriteLine(aNode.Value);

aNode = aNode.Next;

}

aNode = names.Find("David");

if (aNode != null) aNode = names.First;

while (aNode != null) {

Console.WriteLine(aNode.Value);

aNode = aNode.Next;

}

Console.Read()

}

}

216 LINKED LISTS

The linked list in this example does not use a header node because

we can easily find the first node in the linked list with the First prop-

erty. Although it wasn’t used in this example, there is also a Last property

that could be used in the previous While loop to check for the end of the

list:

while (aNode != names.Last) {

Console.WriteLine(aNode.Value);

aNode = aNode.Next;

}

There are two other methods, not shown here, that could prove useful in a

linked list implementation: AddFirst and AddLast. These methods can help

you implement a linked list without having to provide header and tail nodes

in your list.

SUMMARY

In the traditional study of computer programming, linked lists are often the

first data structure studied. In C#, however, it is possible to use one of the

built-in data structures, such as the ArrayList, and achieve the same result

as implementing a linked list. However, it is well worth every programming

student’s time to learn how linked lists work and how to implement them.

The .NET Framework library uses a circularly linked list design to implement

the ArrayList data structure.

C# 2.0 provides both a generic linked list class and a generic Node class.

These classes make it easier to write linked lists that can adapt to different

data type values for the nodes in the list.

There are several good books that discuss linked lists, though none of them

use C# as the target language. The definitive source, as usual, is Knuth’s The

Art of Computer Programming, Volume I, Fundamental Algorithms. Other books

you might consult for more information include Data Structures with C++,

by Ford and Topp, and, if you’re interested in Java implementations (and you

should be because you can almost directly convert a Java implementation to

C#) consult Data Structures and Algorithm Analysis In Java, by Mark Allen

Weiss.

Exercises 217

EXERCISES

1. Rewrite the Console application that uses an iterator-based linked list as a

Windows application.

2. According to legend, the first century Jewish historian, Flavius Josephus,

was captured along with a band of 40 compatriots by Roman soldiers during

the Jewish–Roman war. The captured soldiers decided that they preferred

suicide to being captured and devised a plan for their demise. They were

to form a circle and kill every third soldier until they were all dead. Joseph

and one other decided they wanted no part of this and quickly calculated

where they needed to place themselves in the circle so that they would both

survive. Write a program that allows you to place n people in a circle and

specify that every m person will be killed. The program should determine

the number of the last person left in the circle. Use a circularly linked list

to solve the problem.

3. Write a program that can read an indefinite number of lines of VB.NET code

and store reserved words in one linked list and identifiers and literals in

another linked list. When the program has finished reading input, display

the contents of each linked list.

4. Design and implement a ToArray method for the LinkedList class that takes

a linked list instance and returns an array.

CHAPTER 12

Binary Trees and Binary
Search Trees

Trees are a very common data structure in computer science. A tree is a

nonlinear data structure that is used to store data in a hierarchical manner.

We examine one primary tree structure in this chapter, the binary tree, along

with one implementation of the binary tree, the binary search tree. Binary

trees are often chosen over more fundamental structures, such as arrays and

linked lists, because you can search a binary tree quickly (as opposed to a

linked list) and you can quickly insert data and delete data from a binary tree

(as opposed to an array).

THE DEFINITION OF A TREE

Before we examine the structure and behavior of the binary tree, we need to

define what we mean by a tree. A tree is a set of nodes connected by edges. An

example of a tree is a company’s organization chart (see Figure 12.1).

The purpose of an organization chart is to communicate to the viewer the

structure of the organization. In Figure 12.1, each box is a node and the

lines connecting the boxes are the edges. The nodes, obviously, represent

the entities (people) that make up an organization. The edges represent the

relationship between the entities. For example, the Chief Information Officer

(CIO), reports directly to the CEO, so there is an edge between these two

218

The Definition of a Tree 219

CEO

CIO VP SalesVP Finance

Support
Tech

Support
Tech

Development
Manager

Operations
Manager

FIGURE 12.1. A Partial Organizational Chart.

nodes. The IT manager reports to the CIO so there is an edge connecting

them. The Sales VP and the Development Manager in IT do not have a direct

edge connecting them, so there is not a direct relationship between these two

entities.

Figure 12.2 displays another tree that defines a few terms we need when

discussing trees. The top node of a tree is called the root node. If a node is

connected to other nodes below it, the top node is called the parent, and

Level 0

Level 1 (Left child of 23)

Level 2

Level 3

Subtree

13

23

(Leaf)

7 159

9 15

7746

42

54

Key value

root
(Parent of 13 and 54)

(Right child of 23)

Path from
 23

13

7

to 46

FIGURE 12.2. Parts of a Tree.

220 BINARY TREES AND BINARY SEARCH TREES

the nodes below it are called the parent’s children. A node can have zero,

one, or more nodes connected to it. Special types of trees, called binary trees,

restrict the number of children to no more than two. Binary trees have certain

computational properties that make them very efficient for many operations.

Binary trees are discussed extensively in the sections of this chapter. A node

without any child node is called a leaf.

Continuing to examine Figure 12.2, you can see that by following cer-

tain edges, you can travel from one node to other nodes that are not

directly connected. The series of edges you follow to get from one node

to another is called a path (depicted in the figure with dashed lines). Vis-

iting all the nodes in a tree in some particular order is known as a tree

transversal.

A tree can be broken down into levels. The root node is at Level 0, its

children at Level 1, those node’s children are at Level 2, and so on. A node at

any level is considered the root of a subtree, which consists of that root node’s

children, its children’s children, and so on. We can define the depth of a tree

as the number of layers in the tree.

Finally, each node in a tree has a value. This value is sometimes referred to

as the key value.

BINARY TREES

A binary tree is defined as a tree where each node can have no more than

two children. By limiting the number of children to 2, we can write efficient

programs for inserting data, deleting data, and searching for data in a binary

tree.

Before we discuss building a binary tree in C#, we need to add two

terms to our tree lexicon. The child nodes of a parent node are referred

to as the left node and the right node. For certain binary tree implemen-

tations, certain data values can only be stored in left nodes and other data

values must be stored in right nodes. An example binary tree is shown in

Figure 12.3.

Identifying the child nodes is important when we consider a more specific

type of binary tree—the binary search tree. A binary search tree is a binary tree

where data with lesser values are stored in left nodes and values with greater

values are stored in right nodes. This property provides for very efficient

searches, as we shall soon see.

Binary Trees 221

22

56

10 30 9277

81

FIGURE 12.3. A Binary Tree.

Building a Binary Search Tree

A binary search tree is made up of nodes, so we need a Node class that is

similar to the Node class we used in the linked list implementation. Let’s look

at the code for the Node class first:

public class Node {

public int Data;

public Node left;

public Node right;

public void DisplayNode() {

Console.Write(iData);

}

}

We include Public data members for the data stored in the node and for

each child node. The displayNode method allows us to display the data stored

in a node. This particular Node class holds integers, but we could adopt the

class easily to hold any type of data, or even declare iData of Object type if we

need to.

Next we’re ready to build a BinarySearchTree (BST) class. The class consists

of just one data member—a Node object that represents the root node of the

BST. The default constructor method for the class sets the root node to null,

creating an empty node.

222 BINARY TREES AND BINARY SEARCH TREES

We next need an Insert method to add new nodes to our tree. This method

is somewhat complex and will require some explanation. The first step in

the method is to create a Node object and assign the data the Node holds

to the iData variable. This value is passed in as the only argument to the

method.

The second step to insertion is to see if our BST has a root node. If not,

then this is a new BST and the node we are inserting is the root node. If this

is the case, then the method is finished. Otherwise, the method moves on to

the next step.

If the node being added is not the root node, then we have to prepare to

traverse the BST in order to find the proper insertion point. This process is

similar to traversing a linked list. We need a Node object that we can assign

to the current node as we move from level to level. We also need to position

ourselves inside the BST at the root node.

Once we’re inside the BST, the next step is to determine where to put the

new node. This is performed inside a while loop that we break once we’ve

found the correct position for the new node. The algorithm for determining

the proper position for a node is as follows:

1. Set the parent node to be the current node, which is the root node.

2. If the data value in the new node is less than the data value in the current

node, set the current node to be the left child of the current node. If the

data value in the new node is greater than the data value in the current

node, skip to Step 4.

3. If the value of the left child of the current node is null, insert the new node

here and exit the loop. Otherwise, skip to the next iteration of the While

loop.

4. Set the current node to the right child node of the current node.

5. If the value of the right child of the current node is null, insert the new

node here and exit the loop. Otherwise, skip to the next iteration of the

While loop.

The code for the Insert method, along with the rest of the code for the BST

class (that has been discussed) and the Node class is as follows:

public class Node {

public int Data;

public Node Left;

Binary Trees 223

public Node Right;

public void DisplayNode() {

Console.Write(Data + " ");

}

}

public class BinarySearchTree {

public Node root;

public BinarySearchTree() {

root = null;

}

public void Insert(int i) {

Node newNode = new Node();

newNode.Data = i;

if (root == null)

root = newNode;

else {

Node current = root;

Node parent;

while (true) {

parent = current;

if (i < current.Data) {

current = current.Left;

if (current == null) {

parent.Left = newNode;

break;

}

else {

current = current.Right;

if (current == null) {

parent.Right = newNode;

break;

}

}

}

}

}

224 BINARY TREES AND BINARY SEARCH TREES

Traversing a Binary Search Tree

We now have the basics to implement the BST class, but all we can do so far

is insert nodes into the BST. We need to be able to traverse the BST so that we

can visit the different nodes in several different orders.

There are three traversal methods used with BSTs: inorder, preorder, and

postorder. An inorder traversal visits all the nodes in a BST in ascending order

of the node key values. A preorder traversal visits the root node first, followed

by the nodes in the subtrees under the left child of the root, followed by the

nodes in the subtrees under the right child of the root. Although it’s easy

to understand why we would want to perform an inorder traversal, it is less

obvious why we need preorder and postorder traversals. We’ll show the code

for all three traversals now and explain their uses in a later section.

An inorder traversal can best be written as a recursive procedure. Since the

method visits each node in ascending order, the method must visit both the left

node and the right node of each subtree, following the subtrees under the left

child of the root before following the subtrees under the right side of the

root. Figure 12.4 diagrams the path of an inorder traversal.

Here’s the code for a inorder traversal method:

public void InOrder(Node theRoot) {

if (!(theRoot == null)) {

InOrder(theRoot.Left);

theRoot.DisplayNode();

InOrder(theRoot.Right);

}

}

7010

50

5 8015 60

FIGURE 12.4. Inorder Traversal Order.

Binary Trees 225

To demonstrate how this method works, let’s examine a program that inserts

a series of numbers into a BST. Then we’ll call the inOrder method to display

the numbers we’ve placed in the BST. Here’s the code:

static void Main() {

BinarySearchTree nums = new BinarySearchTree();

nums.Insert(23);

nums.Insert(45);

nums.Insert(16);

nums.Insert(37);

nums.Insert(3);

nums.Insert(99);

nums.Insert(22);

Console.WriteLine("Inorder traversal: ");

nums.inOrder(nums.root);

}

Here’s the output:

Inorder traversal:

3 16 22 23 37 45 99

This list represents the contents of the BST in ascending numerical order,

which is exactly what an inorder traversal is supposed to do.

Figure 12.5 illustrates the BST and the path the inorder traversal follows.

4516

23

3 9922 37

FIGURE 12.5. Inorder Traversal Path.

226 BINARY TREES AND BINARY SEARCH TREES

Now let’s examine the code for a preorder traversal:

public void PreOrder(Node theRoot) {

if (!(theRoot == null)) {

theRoot.displayNode();

preOrder(theRoot.Left);

preOrder(theRoot.Right);

}

}

Notice that the only difference between the preOrder method and the inOrder

method is where the three lines of code are placed. The call to the displayN-

ode method was sandwiched between the two recursive calls in the inOrder

method and it is the first line of the preOrder method.

If we replace the call to inOrder with a call to preOrder in the previous

sample program, we get the following output:

Preorder traversal:

23 16 3 22 45 37 99

Finally, we can write a method for performing postorder traversals:

public void PostOrder(Node theRoot) {

if (!(theRoot == null)) {

PostOrder(theRoot.Left);

PostOrder(theRoot.Right);

theRoot.DisplayNode();

}

}

Again, the difference between this method and the other two traversal

methods is where the recursive calls and the call to displayNode are placed.

In a postorder traversal, the method first recurses over the left subtrees and

then over the right subtrees. Here’s the output from the postOrder method:

Postorder traversal:

3 22 16 37 99 45 23

We’ll look at some practical programming examples using BSTs that use

these traversal methods later in this chapter.

Binary Trees 227

Finding a Node and Minimum/Maximum Values
in a Binary Search Tree

Three of the easiest things to do with BSTs are find a particular value, find the

minimum value, and find the maximum value. We examine these operations

in this section.

The code for finding the minimum and maximum values is almost trivial

in both cases, due to the properties of a BST. The smallest value in a BST will

always be found at the last left child node of a subtree beginning with the left

child of the root node. On the other hand, the largest value in a BST is found

at the last right child node of a subtree beginning with the right child of the

root node.

We provide the code for finding the minimum value first:

public int FindMin() {

Node current = root;

while (!(current.Left == null))

current = current.Left;

return current.Data;

}

The method starts by creating a Node object and setting it to the root node

of the BST. The method then tests to see if the value in the left child is null. If

a non-Nothing node exists in the left child, the program sets the current node

to that node. This continues until a node is found whose left child is equal to

null. This means there is no smaller value below and the minimum value has

been found.

Now here’s the code for finding the maximum value in a BST:

public int FindMax() {

Node current = root;

while (!(current.Right == null))

current = current.Right;

return current.Data;

}

This method looks almost identical to the FindMin() method, except the

method moves through the right children of the BST instead of the left

children.

228 BINARY TREES AND BINARY SEARCH TREES

The last method we’ll look at here is the Find method, which is used to

determine if a specified value is stored in the BST. The method first creates a

Node object and sets it to the root node of the BST. Next it tests to see if the

key (the data we’re searching for) is in that node. If it is, the method simply

returns the current node and exits. If the data isn’t found in the root node, the

data we’re searching for is compared to the data stored in the current node.

If the key is less than the current data value, the current node is set to the

left child. If the key is greater than the current data value, the current node is

set to the right child. The last segment of the method will return null as the

return value of the method if the current node is null (Nothing), indicating

the end of the BST has been reached without finding the key. When the While

loop ends, the value stored in current is the value being searched for.

Here’s the code for the Find method:

public Node Find(int key) {

Node current = root;

while (current.iData != key) {

if (key < current.iData)

current = current.Left;

Else

current = current.Right;

if (current == null)

return null;

}

return current;

}

Removing a Leaf Node From a BST

The operations we’ve performed on a BST so far have not been that compli-

cated, at least in comparison with the operation we explore in this section—

removal. For some cases, removing a node from a BST is almost trivial; for

other cases, it is quite involved and demands that we pay special care to the

code we right, otherwise we run the risk of destroying the correct hierarchical

order of the BST.

Let’s start our examination of removing a node from a BST by discussing

the simplest case—removing a leaf. Removing a leaf is the simplest case since

there are no child nodes to take into consideration. All we have to do is set

Binary Trees 229

each child node of the target node’s parent to null. Of course, the node will

still be there, but there will not be any references to the node.

The code fragment for deleting a leaf node is as follows (this code also

includes the beginning of the Delete method, which declares some data mem-

bers and moves to the node to be deleted):

public Node Delete(int key) {

Node current = root;

Node parent = root;

bool isLeftChild = true;

while (current.Data != key) {

parent = current;

if (key < current.Data) {

isLeftChild = true;

current = current.Right;

else {

isLeftChild = false;

current = current.Right;

}

if (current == null)

return false;

}

if ((current.Left == null) & (current.Right == null))

if (current == root)

root == null;

else if (isLeftChild)

parent.Left = null;

else

parent.Right = null;

}

// the rest of the class goes here

}

The while loop takes us to the node we’re deleting. The first test is to see if

the left child and the right child of that node are null. Then we test to see if

this node is the root node. If so, we set it to null, otherwise, we either set the

left node of the parent to null (if isLeftChild is true) or we set the right node

of the parent to null.

230 BINARY TREES AND BINARY SEARCH TREES

Deleting a Node With One Child

When the node to be deleted has one child, there are four conditions we have

to check for: 1. the node’s child can be a left child; 2. the node’s child can be

a right child; 3. the node to be deleted can be a left child; or 4. the node to be

deleted can be a right child.

Here’s the code fragment:

else if (current.Right == null)

if (current == root)

root = current.Left;

else if (isLeftChild)

parent.Left = current.Left;

else

parent.Right = current.Right;

else if (current.Left == null)

if (current == root)

root = current.Right;

else if (isLeftChild)

parent.Left = parent.Right;

else

parent.Right = current.Right;

First, we test to see if the right node is null. If so, then we test to see if we’re

at the root. If we are, we move the left child to the root node. Otherwise, if the

node is a left child we set the new parent left node to the current left node,

or if we’re at a right child, we set the parent right node to the current right

node.

Deleting a Node With Two Children

Deletion now gets tricky when we have to delete a node with two children.

Why? Look at Figure 12.6. If we need to delete the node marked 52, what do

we do to rebuild the tree. We can’t replace it with the subtree starting at the

node marked 54 because 54 already has a left child.

The answer to this problem is to move the inorder successor into the place

of the deleted node. This works fine unless the successor itself has children,

Binary Trees 231

Node
to

delete

Can’t
move
subtree49

52

45

46 50 5553

54

FIGURE 12.6. Deleting A Node With Two Children.

but there is a way around that scenario also. Figure 12.7 diagrams how using

the inorder successor works.

To find the successor, go to the original node’s right child. This node has

to be larger than the original node by definition. Then it begins following left

child paths until it runs out of nodes. Since the smallest value in a subtree

(like a tree) must be at the end of the path of left child nodes, following this

path to the end will leave us with the smallest node that is larger than the

original node.

Move
in order
successor49

52

45

46 50 5553

54

FIGURE 12.7. Moving the Inorder Successor.

232 BINARY TREES AND BINARY SEARCH TREES

Here’s the code for finding the successor to a deleted node:

public Node GetSuccessor(Node delNode) {

Node successorParent = delNode;

Node successor = delNode;

Node current = delNode.Right;

while (!(current == null)) {

successorParent = current;

successor = current;

current = current.Left;

}

if (!(successor == delNode.Right)) {

successorParent.Left = successor.Right;

successor.Right = delNode.Right;

}

return successor;

}

Now we need to look at two special cases: the successor is the right child

of the node to be deleted and the successor is the left child of the node to be

deleted. Let’s start with the former.

First, the node to be deleted is marked as the current node. Remove this

node from the right child of its parent node and assign it to point to the

successor node. Then, remove the current node’s left child and assign to it

the left child node of the successor node. Here’s the code fragment for this

operation:

else {

Node successor = GetSuccessor(current);

if (current == root)

root = successor;

else if (isLeftChild)

parent.Left = successor;

else

parent.Right = successor;

successor.Left = current.Left;

}

Binary Trees 233

Now let’s look at the situation when the successor is the left child of the

node to be deleted. The algorithm for performing this operation is as follows:

1. Assign the right child of the successor to the successor’s parent left child

node.

2. Assign the right child of the node to be deleted to the right child of the

successor node.

3. Remove the current node from the right child of its parent node and assign

it to point to the successor node.

4. Remove the current node’s left child from the current node and assign it to

the left child node of the successor node.

Part of this algorithm is carried out in the GetSuccessor method and part of it

is carried out in the Delete method. The code fragment from the GetSuccessor

method is:

if (!(successor == delNode.Right)) {

successorParent.Left = successor.Right;

successor.Right = delNode.Right;

}

The code from the Delete method is:

if (current == root)

root = successor;

else if (isLeftChild)

parent.Left = successor;

else

parent.Right = successor;

successor.Left = current.Left;

This completes the code for the Delete method. Because this code is some-

what complicated, some binary search tree implementations simply mark

nodes for deletion and include code to check for the marks when performing

searches and traversals.

Here’s the complete code for Delete:

public bool Delete(int key) {

Node current = root;

234 BINARY TREES AND BINARY SEARCH TREES

Node parent = root;

bool isLeftChild = true;

while (current.Data != key) {

parent = current;

if (key < current.Data) {

isLeftChild = true;

current = current.Right;

} else {

isLeftChild = false;

current = current.Right;

}

if (current == null)

return false;

}

if ((current.Left == null) && (current.Right == null))

if (current == root)

root = null;

else if (isLeftChild)

parent.Left = null;

else

parent.Right = null;

else if (current.Right == null)

if (current == root)

root = current.Left;

else if (isLeftChild)

parent.Left = current.Left;

else

parent.Right = current.Right;

else if (current.Left == null)

if (current == root)

root = current.Right;

else if (isLeftChild)

parent.Left = parent.Right;

else

parent.Right = current.Right;

else

Node successor = GetSuccessor(current);

if (current == root)

Exercises 235

root = successor;

else if (isLeftChild)

parent.Left = successor;

else

parent.Right = successor;

successor.Left = current.Left;

}

return true;

}

SUMMARY

Binary search trees are a special type of data structure called a tree. A tree is

a collection of nodes (objects that consist of fields for data and links to other

nodes) that are connected to other nodes. A binary tree is a specialized tree

structure where each node can have only two child nodes. A binary search

tree is a specialization of the binary tree that follows the condition that lesser

values are stored in left child nodes and greater values are stored in right

nodes.

Algorithms for finding the minimum and maximum values in a binary

search tree are very easy to write. We can also simply define algorithms for

traversing binary search trees in different orders (inorder, preorder, postorder).

These definitions make use of recursion, keeping the number of lines of code

to a minimum while making their analysis a bit harder.

Binary search trees are most useful when the data stored in the structure

are obtained in a random order. If the data in the tree are obtained in sorted or

close-to-sorted order, the tree will be unbalanced and the search algorithms

will not work as well.

EXERCISES

1. Write a program that generates 10,000 random integers in the range of

0–9 and store them in a binary search tree. Using one of the algorithms

discussed in this chapter, display a list of each of the integers and the

number of times they appear in the tree.

2. Add a function to the BinarySearchTree class that counts the number of

edges in a tree.

236 BINARY TREES AND BINARY SEARCH TREES

3. Rewrite Exercise 1 so that it stores the words from a text file. Display all

the words in the file and the number of times they occur in the file.

4. An arithmetic expression can be stored in a binary search tree. Modify the

BinarySearchTree class so that an expression such as 2 + 3 ∗ 4 / 5 can be

properly evaluated using the correct operator precedence rules.

CHAPTER 13

Sets

A set is a collection of unique elements. The elements of a set are called

members. The two most important properties of sets are that the members of

a set are unordered and no member can occur in a set more than once. Sets

play a very important role in computer science but are not included as a data

structure in C#.

This chapter discusses the development of a Set class. Rather than providing

just one implementation, however, we provide two. For nonnumeric items, we

provide a fairly simple implementation using a hash table as the underlying

data store. The problem with this implementation is its efficiency. A more

efficient Set class for numeric values utilizes a bit array as its data store. This

forms the basis of our second implementation.

FUNDAMENTAL SET DEFINITIONS, OPERATIONS AND PROPERTIES

A set is defined as an unordered collection of related members in which

no member occurs more than once. A set is written as a list of members

surrounded by curly braces, such as {0,1,2,3,4,5,6,7,8,9}. We can write a set

in any order, so the previous set can be written as {9,8,7,6,5,4,3,2,1,0} or

any other combination of the members so that all members are written just

once.

237

238 SETS

Set Definitions

Here are some definitions you need to know in order to work with sets.

1. A set that contains no members is called the empty set. The universe is the

set of all possible members.

2. Two sets are considered equal if they contain exactly the same members.

3. A set is considered a subset of another set if all the members of the first set

are contained in the second set.

Set Operations

The following describes the fundamental operations performed on sets.

1. Union: A new set is obtained by combining the members of one set with

the members of a second set.

2. Intersection: A new set is obtained by adding all the members of one set

that also exist in a second set.

3. Difference: A new set is obtained by adding all the members of one set

except those that also exist in a second set.

Set Properties

The following properties are defined for sets.

1. The intersection of a set with the empty set is the empty set. The union of

a set with the empty set is the original set.

2. The intersection of a set with itself is the original set. The union of a set

with itself is the original set.

3. Intersection and union are commutative. In other words, set1 intersection

set2 is equal to set2 intersect set1, and the same is true for the union of the

two sets.

4. Intersection and union are associative. set1 intersection (set2 intersection

set3) is equal to (set1 intersection set2) intersection s3. The same is true

for the union of multiple sets.

5. The intersection of a set with the union of two other sets is distribu-

tive. In other words, set1 intersection (set2 union set3) is equal to (set1

A First Set Class Implementation Using a Hash Table 239

intersection set2) union (set1 intersection set3). This also works for the

union of a set with the intersection of two other sets.

6. The intersection of a set with the union of itself and another set yields the

original set. This is also true for the union of a set with the intersection of

itself and another set. This is called the absorption law.

7. The following equalities exist when the difference of the union or inter-

section of two sets is taken from another set. The equalities are:

set1 difference (set2 union set3) equals (set1 difference set2) intersection

(set1 difference set3)

and

set1 difference (set2 intersection set3) equals (set1 difference set2) union

(set1 difference set3)

These equalities are known as DeMorgan’s Laws.

A FIRST SET CLASS IMPLEMENTATION USING A HASH TABLE

Our first Set class implementation will use a hash table to store the members

of the set. The HashTable class is one of the more efficient data structures

in the.NET Framework library and it should be your choice for most class

implementations when speed is important. We will call our class CSet since

Set is a reserved word in C#.

Class Data Members and Constructor Method

We only need one data member and one constructor method for our CSet class.

The data member is a hash table and the constructor method instantiates the

hash table. Here’s the code:

public class CSet {

private Hashtable data;

public CSet() {

data = new Hashtable();

}

// More code to follow

}

240 SETS

The Add Method

To add members to a set, the Add method needs to first check to make sure the

member isn’t already in the set. If it is, then nothing happens. If the member

isn’t in the set, it is added to the hash table.

public void Add(Object item) {

if (!(data.ContainsValue(item))

data.Add(Hash(item), item);

}

Since items must be added to a hash table as a key–value pair, we calculate

a hash value by adding the ASCII value of the characters of the item being

added to the set. Here’s the Hash function:

private string Hash(Object item) {

char[] chars;

string s = item.ToString();

chars = s.ToCharArray();

for(int i = 0; i <= chars.GetUpperBound(0); i++)

hashValue += (int)chars[i];

return hashValue.ToString();

}

The Remove and Size Methods

We also need to be able to remove members from a set and we also need to

determine the number of members (size) in a set. These are straightforward

methods:

public void Remove(Object item) {

data.Remove(Hash(item));

}

public int Size() {

return data.Count;

}

A First Set Class Implementation Using a Hash Table 241

The Union Method

The Union method combines two sets using the Union operation discussed

previously to form a new set. The method first builds a new set by adding all

the members of the first set. Then the method checks each member of the

second set to see if it is already a member of the first set. If it is, the member

is skipped over, and if not, the member is added to the new set.

Here’s the code:

public CSet Union(CSet aSet) {

CSet tempSet = new CSet();

foreach (Object hashObject in data.Keys)

tempSet.Add(this.data[hashObject]);

foreach (Object hashObject in aSet.data.Keys)

if (!(this.data.ContainsKey(hashObject)))

tempSet.Add(aSet.data[hashObject]);

return tempSet;

}

The Intersection Method

The Intersection method loops through the keys of one set, checking to see if

that key is found in the passed-in set. If so, the member is added to the new

set and skipped otherwise.

public CSet Intersection(CSet aSet) {

CSet tempSet = new CSet();

foreach (Object hashObject in data.Keys)

if (aSet.data.Contains(hashObject))

tempSet.Add(aSet.GetValue(hashObject))

return tempSet;

}

The isSubset Method

The first requirement for a set to be a subset of another set is that the first

set must be smaller in size in the second set. The Subset method checks the

242 SETS

size of the sets first, and if the first set qualifies, then checks to see that every

member of the first set is a member of the second set. The code is shown as

follows:

public bool Subset(CSet aSet) {

if (this.Size > aSet.Size)

return false;

else

foreach(Object key in this.data.Keys)

if (!(aSet.data.Contains(key)))

return false;

return true;

}

The Difference Method

We’ve already examined how to obtain the difference of two sets. To perform

this computationally, the method loops over the keys of the first set, looking

for any matches in the second set. A member is added to the new set if it exists

in the first set and is not found in the second set. Here’s the code (along with

a ToString method):

public CSet Difference(CSet aSet) {

CSet tempSet = new CSet();

foreach (Object hashObject in data.Keys)

if (!(aSet.data.Contains(hashObject)))

tempSet.Add(data[hashObject]);

return tempSet;

}

public override string ToString() {

string s;

foreach(Object key in data.Keys)

s += data[key] + " ";

return s;

}

A First Set Class Implementation Using a Hash Table 243

A Program to Test the CSet Implementation

Here’s a program that tests our implementation of the CSet class by cre-

ating two sets, performing a union of the two sets, an intersection of the

two sets, finding the subset of the two sets, and the difference of the two

sets.

Here is the program:

static void Main() {

CSet setA = new CSet();

CSet setB = new CSet();

setA.add("milk");

setA.add("eggs");

setA.add("bacon");

setA.add("cereal");

setB.add("bacon");

setB.add("eggs");

setB.add("bread")

CSet setC = new CSet();

setC = setA.Union(setB);

Console.WriteLine();

Console.WriteLine("A: " & setA.ToString());

Console.WriteLine("B: " & setB.ToString())

Console.WriteLine("A union B: " & setC.ToString());

setC = setA.Intersection(setB);

Console.WriteLine("A intersect B: " &

setC.ToString());

setC = setA.Difference(setB);

Console.WriteLine("A diff B: " & setC.ToString());

setC = setB.Difference(setA);

Console.WriteLine("B diff A: " & setC.ToString());

if (setB.isSubset(setA))

Console.WriteLine("b is a subset of a");

else

Console.WriteLine("b is not a subset of a");

}

244 SETS

The output from this program is:

If we comment out the line where “bread” is added to setB, we get the

following output:

In the first example, setB could not be a subset of subA because it contained

bread. Removing bread as a member makes setB a subset of subA, as shown

in the second screen.

A BITARRAY IMPLEMENTATION OF THE CSET CLASS

The previous implementation of the CSet class works for objects that are not

numbers, but is still somewhat inefficient, especially for large sets. When we

have to work with sets of numbers, a more efficient implementation uses the

BitArray class as the data structure to store set members. The BitArray class

was discussed in depth in Chapter 7.

Overview of Using a BitArray Implementation

There are several advantages to using a BitArray to store integer set members.

First, because we are really only storing Boolean values, the storage space

A BitArray Implementation of the CSet Class 245

requirement is small. The second advantage is that the four main operations

we want to perform on sets (union, intersection, difference, and subset) can

be performed using simple Boolean operators (And, Or, and Not). The imple-

mentations of these methods are much faster than the implementations using

a hash table.

The storage strategy for creating a set of integers using a BitArray is as

follows: Consider adding the member 1 to the set. We simply set the array

element in index position 1 to True. If we add 4 to the set, the element at

position 4 is set to True, and so on.

We can determine which members are in the set by simply checking to

see if the value at that array position is set to True. We can easily remove a

member from the set by setting that array position to False.

Computing the union of two sets using Boolean values is simple and effi-

cient. Since the union of two sets is a combination of the members of both

sets, we can build a new union set by Oring the corresponding elements of

the two BitArrays. In other words, a member is added to the new set if the

value in the corresponding position of either BitArray is True.

Computing the intersection of two sets is similar to computing the union;

only for this operation we use the And operator instead of the Or operator.

Similarly, the difference of two sets is found by executing the And operator

with a member from the first set and the negation of the corresponding mem-

ber of the second set. We can determine if one set is a subset of another set by

using the same formula we used for finding the difference. For example, if:

setA(index) && !(setB(index))

evaluates to False then setA is not a subset of setB.

The BitArray Set Implementation

The code for a CSet class based on a BitArray is shown as follows:

public class CSet {

private BitArray data;

public BitArray() {

data = new BitArray(5);

}

public void Add(int item) {

data[item] = true;

246 SETS

}

public bool IsMember(int item) {

return data[item];

}

public void Remove(int item) {

data[item] = false;

}

public CSet Union(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

tempSet.data[index] = (this.data[index ||

aSet.data[index]);

return tempSet;

}

public CSet Intersection(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

tempSet.data[index] = (this.data[index] &&

aSet.data[index]);

return tempSet;

}

public CSet Difference(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

tempSet.data[index] = (this.data[index] &&

(!(aSet.data[index])));

return tempSet;

}

public bool IsSubset(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

if (this.data[index] && (!(aSet.data[index])))

return false;

return true;

}

public override string ToString() {

string s = "";

for(int i = 0; i <= data.Count-1; i++)

if (data[index])

str += index;

A BitArray Implementation of the CSet Class 247

return st;

}

}

Here’s a program to test our implementation:

static void Main()

CSet setA = new CSet();

CSet setB = new CSet();

setA.Add(1);

setA.Add(2);

setA.Add(3);

setB.Add(2);

setB.Add(3);

CSet setC = new CSet();

setC = setA.Union(setB);

Console.WriteLine();

Console.WriteLine(setA.ToString());

Console.WriteLine(setC.ToString());

setC = setA.Intersection(setB);

Console.WriteLine(setC.ToString());

setC = setA.Difference(setB);

Console.WriteLine(setC.ToString());

Dim flag As Boolean = setB.isSubset(setA);

if (flag)

Console.WriteLine("b is a subset of a");

else

Console.WriteLine("b is not a subset of a");

}

The output from this program is:

248 SETS

SUMMARY

Sets and set theory provide much of the foundation of computer science

theory. Although some languages provide a built-in set data type (Pascal),

and other languages provide a set data structure via a library (Java), C# does

not provide a set data type or data structure.

The chapter discussed two different implementations of a set class, one

using a hash table as the underlying data store and the other implementation

using a bit array as the data store. The bit array implementation is only appli-

cable for storing integer set members, whereas the hash table implementation

will store members of any data type. The bit array implementation is inher-

ently more efficient than the hash table implementation and should be used

any time you are storing integer values in a set.

EXERCISES

1. Create two pairs of sets using both the hash table implementation and the

bit array implementation. Both implementations should use the same sets.

Using the Timing class, compare the major operations (union, intersec-

tion, difference, isSubset) of each implementation and report the actual

difference in times.

2. Modify the hash table implementation so that it uses an ArrayList to store

the set members rather than a hash table. Compare the running times of

the major operations of this implementation with the hash table imple-

mentation. What is the difference in times?

CHAPTER 14

Advanced Sorting Algorithms

In this chapter, we examine algorithms for sorting data that are more

complex than the algorithms examined in Chapter 4. These algorithms are

also more efficient, and one of them, the QuickSort algorithm, is generally

considered to be the most efficient sort to use in most situations. The other

sorting algorithms we’ll examine are the ShellSort, the MergeSort, and the

HeapSort.

To compare these advanced sorting algorithms, we’ll first discuss how each

of them is implemented, and in the exercises you will use the Timing class to

determine the efficiency of these algorithms.

THE SHELLSORT ALGORITHM

The ShellSort algorithm is named after its inventor Donald Shell. This algo-

rithm is fundamentally an improvement of the insertion sort. The key concept

in this algorithm is that it compares items that are distant rather than adjacent

items, as is done in the insertion sort. As the algorithm loops through the data

set, the distance between each item decreases until at the end the algorithm

is comparing items that are adjacent.

ShellSort sorts distant elements by using an increment sequence. The

sequence must start with 1, but can then be incremented by any amount.

249

250 ADVANCED SORTING ALGORITHMS

A good increment to use is based on this code fragment:

while (h <= numElements / 3)

h = h * 3 + 1;

where numElements is the number of elements in the data set being sorted,

such as an array.

For example, if the sequence number generated by the code is 4, every

fourth element of the data set is sorted. Then a new sequence number is

chosen, using this code:

h = (h - 1) / 3;

Then the next h elements are sorted, and so on.

Let’s look at the code for the ShellSort algorithm (we are using the Array-

Class code from Chapter 4):

public void ShellSort() {

int inner, temp;

int h = 1;

while (h <= numElements / 3)

h = h * 3 + 1;

while (h > 0) {

for(int outer = h; h <= numElements-1;h++) {

temp = arr[outer];

inner = outer;

while ((inner > h-1) && arr[inner-h] >= temp) {

arr[inner] = arr[inner-h];

inner -= h;

}

arr[inner] = temp;

}

h = (h-1) / 3;

}

}

The MergeSort Algorithm 251

Here’s some code to test the algorithm:

static void Main() {

const int SIZE = 19;

CArray theArray = new CArray(SIZE);

For(int index = 0; index <= SIZE; index++)

theArray.Insert(Int(100 * Rnd() + 1));

Console.WriteLine();

theArray.showArray();

Console.WriteLine();

theArray.ShellSort();

theArray.showArray();

}

The output from this code is:

The ShellSort is often considered a good advanced sorting algorithm to use

because it is fairly easy to implement but its performance is acceptable even

for data sets in the tens of thousands of elements.

THE MERGESORT ALGORITHM

The MergeSort algorithm is a very good example of a recursive algorithm. This

algorithm works by breaking the data set up into two halves and recursively

sorting each half. When the two halves are sorted, they are brought together

using a merge routine.

The easy work comes when sorting the data set. Let’s say we have the

following data in the set: 71 54 58 29 31 78 2 77. First, the data set is bro-

ken up into two separate sets: 71 54 58 29 and 31 78 2 77. Then each half

252 ADVANCED SORTING ALGORITHMS

is sorted: 29 54 58 71 and 2 31 77 78. Then the two sets are merged, 2

29 31 54 58 71 77 78. The merge process compares the first two elements

of each data set (stored in temporary arrays), copying the smaller value to

yet another array. The element not added to the third array is then com-

pared to the next element in the other array. The smaller element is added

to the third array, and this process continues until both arrays are out of

data.

But what if one array runs out of data before the other? This is likely to

happen and the algorithm makes provisions for this situation. Two extra loops

are used that are called only if one or the other of the two arrays still has data

in it after the main loop finishes.

Now we can see the code for performing a MergeSort. The first two methods

are the MergeSort and the recMergeSort methods. The first method simply

launches the recursive subroutine recMergeSort, which performs the sorting

of the array:

public void MergeSort() {

int[] tempArray = new int[numElements];

RecMergeSort(tempArray, 0, numElements-1);

}

public void RecMergeSort(int[] tempArray, int lbount,

int ubound) {

if (lbound == ubound)

return

else {

int mid = (int)(lbound + ubound) / 2;

RecMergeSort(tempArray, lbound, mid);

RecMergeSort(tempArray, mid+1, ubound);

RecMergeSort(tempArray, lbound, mid+1, ubound);

}

}

In RecMergeSort, the first if statement is the base case of the recursion,

returning to the calling program when the condition becomes true. Otherwise,

the middle point of the array is found and the routine is called recursively

on the bottom half of the array (the first call to RecMergeSort) and then on

the top half of the array (the second call to RecMergeSort). Finally, the entire

array is merged by calling the merge method.

The MergeSort Algorithm 253

Here is the code for the merge method:

public void Merge(int[] tempArray, int lowp, int highp,

int ubound) {

int lbound = lowp;

int mid = highp - 1;

int n = (ubound-lbound) + 1;

while ((lowp <= mid) && (highp <= ubound))

if (arr[lowp] < arr[highp]) {

tempArray[j] = arr[lowp];

j++;

lowp++;

} else {

tempArray[j] = arr[highp];

j++;

highp++;

}

}

while (lowp <= mid) {

tempArray[j] = arr[lowp];

j++;

lowp++;

}

while (highp <= ubound) {

tempArray[j] = arr[highp];

j++;

highp++;

}

for(int j = 0; j <= n-1; j++)

arr[lbound+j] = tempArray[j];

}

This method is called each time the recMergeSort subroutines perform a

preliminary sort. To demonstrate better how this method works along with

recMergeSort, let’s add one line of code to the end of the merge method:

this.showArray();

With this one line, we can view the array in its different temporary states

before it is completely sorted. Here’s the output:

254 ADVANCED SORTING ALGORITHMS

The first line shows the array in the original state. The second line shows

the beginning of the lower half being sorted. By the fifth line, the lower half

is completely sorted. The sixth line shows that the upper half of the array is

beginning to be sorted and the ninth line shows that both halves are completely

sorted. The tenth line is the output from the final merge and the eleventh line

is just another call to the showArray method.

THE HEAPSORT ALGORITHM

The HeapSort algorithm makes use of a data structure called a heap. A heap

is similar to a binary tree, but with some important differences. The Heap-

Sort algorithm, although not the fastest algorithm in this chapter, has some

attractive features that encourage its use in certain situations.

Building a Heap

The heap data structure, as we discussed earlier, is similar to a binary tree,

but not quite the same. First, heaps are usually built using arrays rather than

using node references. Also, there are two very important conditions for a

heap: 1. a heap must be complete, meaning that each row must be filled in;

and 2. each node contains data that is greater than or equal to the data in the

child nodes below it. An example of a heap is shown in Figure 14.1. The array

that stores the heap is shown in Figure 14.2.

The data we store in a heap is built from a Node class, similar to the nodes

we’ve used in other chapters. This particular Node class, however, will hold

just one piece of data, its primary, or key, value. We don’t need any references

The HeapSort Algorithm 255

77

71 31

29

78

58 2

82

54

FIGURE 14.1. A Heap.

to other nodes but we like using a class for the data so we can easily change

the data type of the data being stored in the heap if we need to. Here’s the

code for the Node class:

public class Node {

Public int data;

public void Node(ByVal key As Integer) {

data = key;

}

}

Heaps are built by inserting nodes into the heap array, whose elements are

nodes of the heap. A new node is always placed at the end of the array in

an empty array element. The problem is that doing this will probably break

the heap condition because the new node’s data value may be greater than

some of the nodes above it. To restore the array to the proper heap condition,

we must shift the new node up until it reaches its proper place in the array.

We do this with a method called ShiftUp. Here’s the code:

public void ShiftUp(int index) {

int parent = (index − 1) / 2;

82 77 78 71 31 58 2 54 29

0 1 2 3 4 5 6 7 8

FIGURE 14.2. An Array For Storing the Heap in Figure 14.1.

256 ADVANCED SORTING ALGORITHMS

Node bottom = heapArray[index];

while ((index > 0) && (heapArray[parent].data <

bottom.data)) {

heapArray[index] = heapArray[parent];

index = parent;

parent = (parent − 1) / 2;

}

heapArray[index] = bottom;

}

And here’s the code for the Insert method:

public bool Insert(int key) {

if (currSize == maxSize)

return False;

Node newNode = new Node(key);

heapArray[currSize] = newNode;

ShiftUp[currSize];

currSize++;

return true;

}

The new node is added at the end of the array. This immediately breaks the

heap condition, so the new node’s correct position in the array is found by the

ShiftUp method. The argument to this method is the index of the new node.

The parent of this node is computed in the first line of the method. The new

node is then saved in a Node variable, bottom. The while loop then finds the

correct spot for the new node. The last line then copies the new node from

its temporary location in bottom to its correct position in the array.

Removing a node from a heap always means removing the node with highest

value. This is easy to do because the maximum value is always in the root node.

The problem is that once the root node is removed, the heap is incomplete

and must be reorganized. There is an algorithm for making the heap complete

again:

1. Remove the node at the root.

2. Move the node in the last position to the root.

3. Trickle the last node down until it is below.

The HeapSort Algorithm 257

When this algorithm is applied continually, the data is removed from the

heap in sorted order. Here is the code for the Remove and TrickleDown

methods:

public Node Remove() {

Node root = heapArray[0];

currSize--;

heapArray[0] = heapArray[currSize];

ShiftDown(0);

return root;

}

public void ShiftDown(int index) {

int largerChild;

Node top = heapArray[index];

while (index < (int)(currSize / 2)) {

int leftChild = 2 * index + 1;

int rightChild = leftChild + 1;

if ((rightChild < currSize) &&

heapArray[leftChild].data

< heapArray[righChild].data)

largerChild = rightChild;

else

largerChild = leftChild;

if (top.data >= heapArray[largerChild].data)

break;

heapArray[index] = heapArray[largerChild];

index = largerChild;

}

heapArray[index] = top;

}

This is all we need to perform a heap sort, so let’s look at a program that

builds a heap and then sorts it:

static void Main() {

const int SIZE = 9;

Heap aHeap = new Heap(SIZE);

Node sortedHeap = new Node[SIZE];

for(int i = 0; i < SIZE; i++) {

258 ADVANCED SORTING ALGORITHMS

Random RandomClass = new Random();

int rn = RandomClass.Next(1,100);

Node aNode = new Node(rn);

aHeap.InsertAt(i, aNode);

aHeap.IncSize();

}

Console.Write("Random: ");

aHeap.ShowArray();

Console.WriteLine();

Console.Write("Heap: ");

for(int i = (int)SIZE/2-1; i >= 0; i--)

aHeap.ShiftDown(i);

aHeap.ShowArray();

for(int i = SIZE-1; i >= 0; i--) {

Node bigNode = aHeap.Remove();

aHeap.InsertAt(i, bigNode);

}

Console.WriteLine();

Console.Write("Sorted: ");

aHeap.ShowArray();

}

The first for loop begins the process of building the heap by inserting

random numbers into the heap. The second loop heapifies the heap and the

third for loop then uses the Remove method and the TrickleDown method to

rebuild the heap in sorted order. Here’s the output from the program:

HeapSort is the second fastest of the advanced sorting algorithms we exam-

ine in this chapter. Only the QuickSort algorithm, which we discuss in the

next section, is faster.

The QuickSort Algorithm 259

THE QUICKSORT ALGORITHM

QuickSort has a reputation, deservedly earned, as the fastest algorithm of

the advanced algorithms we’re discussing in this chapter. This is true only

for large, mostly unsorted data sets. If the data set is small (100 elements or

less), or if the data is relatively sorted, you should use one of the fundamental

algorithms discussed in Chapter 4.

The QuickSort Algorithm Described

To understand how the QuickSort algorithm works, imagine you are a teacher

and you have to alphabetize a stack of student papers. You will pick a let-

ter that is in the middle of the alphabet, such as M, putting student papers

whose name starts with A through M in one stack and names starting with

N through Z in another stack. Then you split the A–M stack into two stacks

and the N–Z stack into two stacks using the same technique. Then you do

the same thing again until you have a set of small stacks (A–C, D–F, . . . ,

X–Z) of two or three elements that sort easily. Once the small stacks are

sorted, you simply put all the stacks together and you have a set of sorted

papers.

As you should have noticed, this process is recursive, since each stack

is broken up into smaller and smaller stacks. Once a stack is broken down

into one element, that stack cannot be further broken up and the recursion

stops.

How do we decide where to split the array into two halves? There are many

choices, but we’ll start by just picking the first array element:

mv = arr[first];

Once that choice is made, we next have to understand how to get the array

elements into the proper “half ” of the array. (The reason the word half is in

quotes in the previous sentence is because it is entirely possible that the two

halves will not be equal, depending on the splitting point.) We accomplish

this by creating two variables, first and last, storing the second element in first

and the last element in last. We also create another variable, theFirst, which

stores the first element in the array. The array name is arr for the sake of this

example.

260 ADVANCED SORTING ALGORITHMS

87 91 65 72 84 99 89

theFirst first last

a.

87 91 65 72 84 99 89

theFirst first last

Increment first until it is >= split value
first stops at 91 (figure a.)

Increment first until > split value or > last
Decrement last until <= split value or < first

last is before first (or first is after last)
so swap elements at theFirst and last

Repeat process

Decrement last until <= split value

87 84 65 72 91 99 89

theFirst first last

87 84 65 72 91 99 89

65 84 87 72 91 99 89

theFirst firstlast

Swap elements at first and last

1

2

3

4

5

6

split value = 87

FIGURE 14.3. The Splitting an Array.

Figure 14.3 describes how the QuickSort algorithm works.

Code for the QuickSort Algorithm

Now that we’ve reviewed how the algorithm works, let’s see how it’s coded in

C#:

public void QSort() {

RecQSort(0, numElements-1);

}

public void RecQSort(int first, int last) {

if ((last-first) <= 0)

return;

The QuickSort Algorithm 261

else {

int pivot = arr[last];

int part = this.Partition(first, last);

RecQSort(first, part-1);

RecQSort(part+1, last);

}

}

public int Partition(int first, int last) {

int pivotVal = arr[first];

int theFirst = first;

bool okSide;

first++;

do {

okSide = true;

while (okSide)

if (arr[first] > pivotVal)

okSide = false;

else {

first++;

okSide = (first <= last);

}

okSide = (first <= last);

while (okSide)

if (arr[last] <= pivotVal)

okSide = false;

else {

last--;

okSide = (first <= last);

if (first < last) {

Swap(first, last);

this.ShowArray();

first++;

last--;

}

} loop while (first <= last);

Swap(theFirst, last);

this.ShowArray();

return last;

}

262 ADVANCED SORTING ALGORITHMS

public void Swap(int item1, int item2) {

int temp = arr[item1];

arr[item1] = arr[item2];

arr[item2] = temp;

}

An Improvement to the QuickSort Algorithm

If the data in the array is random, then picking the first value as the “pivot”

or “partition” value is perfectly acceptable. Otherwise, however, making this

choice will inhibit the performance of the algorithm.

A popular choice for picking this value is to determine the median value in

the array. You can do this by taking the upper bound of the array and dividing

it by 2. For example:

theFirst = arr[(int)arr.GetUpperBound(0) / 2]

Studies have shown that using this strategy can reduce the running time of

the algorithm by about 5 percent (see Weiss 1999, p. 243).

SUMMARY

The algorithms discussed in this chapter are all quite a bit faster than the

fundamental sorting algorithms discussed in Chapter 4, but it is universally

accepted that the QuickSort algorithm is the fastest sorting algorithm and

should be used for most sorting scenarios. The Sort method that is built

into several of the .NET Framework library classes is implemented using

QuickSort, which explains how dominant QuickSort is over other sorting

algorithms.

EXERCISES

1. Write a program that compares all four advanced sorting algorithms dis-

cussed in this chapter. To perform the tests, create a randomly generated

array of 1,000 elements. What is the ranking of the algorithms? What hap-

pens when you increase the array size to 10,000 elements and then 100,000

elements?

2. Using a small array (less than 20), compare the sorting times between

the insertion sort and QuickSort. What is the difference in time? Can you

explain why?

CHAPTER 15

Advanced Data Structures
and Algorithms for Searching

In this chapter, we present a set of advanced data structures and algorithms

for performing searching. The data structures we cover include the red–black

tree, the splay tree, and the skip list. AVL trees and red–black trees are two

solutions to the problem of handling unbalanced binary search trees. The

skip list is an alternative to using a tree-like data structure that foregoes the

complexity of the red–black and splay trees.

AVL TREES

Another solution to maintaining balanced binary trees is the AVL tree. The

name AVL comes from the two computer scientists who discovered this data

structure, G. M. Adelson-Velskii and E. M. Landis, in 1962. The defining

characteristic of an AVL tree is that the difference between the height of the

right and left subtrees can never be more than one.

AVL Tree Fundamentals

By continually comparing the heights of the left and right subtrees of a tree,

the AVL tree is guaranteed to always stay “in balance.” AVL trees utilize a

technique, called a rotation, to keep them in balance.

263

264 ADVANCED DATA STRUCTURES AND ALGORITHMS

40

20

FIGURE 15.1.

To understand how a rotation works, let’s look at a simple example that

builds a binary tree of integers. Starting with the tree shown in Figure 15.1, if

we insert the value 10 into the tree, the tree becomes unbalanced, as shown

in Figure 15.2. The left subtree now has a height of 2, but the right subtree

has a height of 0, violating the rule for AVL trees. The tree is balanced by

performing a single right rotation, moving the value 40 down to the right, as

shown in Figure 15.3.

Now look at the tree in Figure 15.4. If we insert the value 30, we get the

tree in Figure 15.5. This tree is unbalanced. We fix it by performing what is

called a double rotation, moving 40 down to the right and 30 up to the right,

resulting in the tree shown in Figure 15.6.

The AVL Tree Implementation

Our AVL tree implementation consists of two classes: a Node class used to

hold data for each node in the tree, and the AVLTree class, which contains the

methods for inserting nodes and rotating nodes.

The Node class for an AVL tree implementation is built similarly to nodes

for a binary tree implementation, but with some important differences. Each

node in an AVL tree must contain data about its height, so a data member

for height is included in the class. We also have the class implement the

IComparable interface in order to compare the values stored in the nodes.

Also, because the height of a node is so important, we include a ReadOnly

Property method to return a node’s height.

Here is the code for the Node class:

public class Node : IComparable {

public Object element;

public Node left;

public Node right;

AVL Trees 265

40

20

10

FIGURE 15.2.

20

10 40

FIGURE 15.3.

20

40

FIGURE 15.4.

20

40

30

FIGURE 15.5.

30

20 40

FIGURE 15.6.

266 ADVANCED DATA STRUCTURES AND ALGORITHMS

public int height;

public Node(Object data, Node lt, Node rt) {

element = data;

left = lt;

right = rt;

height = 0;

}

public Node(Object data) {

element = data;

left = null;

right = null;

}

public int CompareTo(Object obj) {

return (this.element.CompareTo((Node)obj.element));

}

public int GetHeight() {

if (this == null)

return -1;

else

return this.height;

}

}

The first method in the AVLTree class we examine is the Insert method.

This method determines where to place a node in the tree. The method is

recursive, either moving left when the current node is greater than the node

to be inserted or moving right when the current node is less than the node to

be inserted.

Once the node is in its place, the difference in heights of the two subtrees is

calculated. If it is determined the tree is unbalanced, a left or right, or double

left or double right rotation is performed. Here’s the code (the code for the

different rotation methods is shown after the Insert method):

private Node Insert(Object item, Node n) {

if (n == null)

n = new Node(item, null, null);

else if (item.CompareTo(n.element) < 0) {

AVL Trees 267

n.left = Insert(item, n.left);

if (height(n.left) - height(n.right) == 2)

n = RotateWithLeftchild(n);

else

n = DoubleWithLeftChild(n);

}

else if (item.CompareTo(n.element) > 0) {

n.right = Insert(item, n.right);

if ((height(n.right) - height(n.left)) == 2)

if (item.CompareTo(n.right.element) > 0)

n = RotateWithRightChild(n);

else

n = DoubleWithRightChild(n);

else

;// do nothing, duplicate value

n.height = Math.Max(height(n.left), height(n.right)) + 1;

return n

}

The different rotation methods are shown as follows:

private Node RotateWithLeftChild(Node n2) {

Node n1 = n2.left;

n2.left = n1.right;

n1.right = n2;

n2.height = Math.Max(height(n2.left), height

(n2.right)) + 1

n1.height = Math.Max(height(n1.left), n2.height) + 1

return n1

}

private Node RotateWithRightChild(Node n1) {

Node n2 = n1.right;

n1.right = n2.left;

n2.left = n1;

n1.height = Math.Max(height(n1.left),

height(n1.right)) + 1);

n2.height = Math.Max(height(n2.right), n1.height) + 1;

return n2;

}

268 ADVANCED DATA STRUCTURES AND ALGORITHMS

private Node DoubleWithLeftChild(Node n3) {

n3.left = RotateWithRightChild(n3.left);

return RotateWithLeftChild(n3);

}

private Node DoubleWithRightChild(Node n1) {

n1.right = RotateWithLeftChild(n1.right);

return RotateWithRightChild(n1);

}

There are many other methods we can implement for this class, that is,

the methods from the BinarySearchTree class. We leave the implementation

of those methods to the exercises. Also, we have purposely not implemented

a deletion method for the AVLTree class. Many AVL tree implementations use

lazy deletion. This system of deletion marks a node for deletion but doesn’t

actually delete the node from the tree. The performance cost of deleting nodes

and then rebalancing the tree is often prohibitive. You will get a chance to

experiment with lazy deletion in the exercises.

RED–BLACK TREES

AVL trees are not the only solution to unbalanced binary search tree. Another

data structure you can use is the red–black tree. A red-black tree is the one in

which the nodes of the tree are designated as either red or black, depending on

a set of rules. By properly coloring the nodes in the tree, the tree stays nearly

perfectly balanced. An example of a red–black tree is shown in Figure 15.7

(black nodes are shaded):

56

20

10 30

60

9050

85 95405

10

55

40

FIGURE 15.7. A Red–Black Tree.

Red–Black Trees 269

56

30

10 35

80

9070

85 956010

20

75

50 65

40

FIGURE 15.8.

Red–Black Tree Rules

The following rules are used when working with red–black trees:

1. Every node in the tree is colored either red or black.

2. The root node is colored black.

3. If a node is red, the children of that node must be black.

4. Each path from a node to a null reference must contain the same number

of black nodes.

The consequence of these rules is that a red–black tree stays in very good

balance, which means searching a red–black tree is quite efficient. As with AVL

trees, though, these rules also make insertion and deletion more difficult.

Red–Black Tree Insertion

Inserting a new item into a red–black tree is complicated because it can lead

to a violation of one of the rules shown in the earlier section. For example,

look at the red-black tree in Figure 15.8.

We can insert a new item into the tree as a black node. If we do so, we are

violating rule 4. So the node must be colored red. If the parent node is black,

270 ADVANCED DATA STRUCTURES AND ALGORITHMS

56

30

10 35

70

8060

75 90

85 95

5010

20

65

45

40

FIGURE 15.9.

everything is fine. If the parent node is red, however, then rule 3 is violated.

We have to adjust the tree either by having nodes change color or by rotating

nodes as we did with AVL trees.

We can make this process more concrete by looking at a specific example.

Let’s say we want to insert the value 55 into the tree shown in Figure 15.8. As

we work our way down the tree, we notice that the value 60 is black and has

two red children. We can change the color of each of these nodes (60 to red,

50 and 65 to black), then rotate 60 to 80’s position, and then perform other

rotations to put the subtree back in order. We are left with the red–black tree

shown in Figure 15.9. This tree now follows all the red–black tree rules and

is well balanced.

Red–Black Tree Implementation Code

Rather than break up the code with explanations, we show the complete code

for a red–black tree implementation in one piece, with a description of the

code to follow. We start with the Node class and continue with the RedBlack

class.

public class Node {

public string element;

public Node left;

Red–Black Trees 271

public Node right;

public int color;

const int RED = 0;

const int BLACK = 1;

public Node(string element, Node left, Node right) {

this.element = element;

this.left = left;

this.right = right;

this.color = BLACK;

}

public Node(string element) {

this.element = element;

this.left = left;

this.right = right;

this.color = BLACK;

}

}

public class RBTree {

const int RED = 0;

const int BLACK = 1;

private Node current;

private Node parent;

private Node grandParent;

private Node greatParent;

private Node header;

private Node nullNode;

public RBTree(string element) {

current = new Node("");

parent = new Node("");

grandParent = new Node("");

greatParent = new Node("");

nullNode = new Node("");

nullNode.left = nullNode;

nullNode.right = nullNode;

header = new Node(element);

header.left = nullNode;

272 ADVANCED DATA STRUCTURES AND ALGORITHMS

header.right = nullNode;

}

public void Insert(string item) {

grandParent = header;

parent = grandParent;

current = parent;

nullNode.element = item;

while (current.element.CompareTo(item) ! = 0) {

Node greatParent = grandParent;

grandParent = parent;

parent = current;

if (item.CompareTo(current.element) < 0)

current = current.left;

else

current = current.right;

if ((current.left.color) = RED &&

(current.right.color) = RED)

HandleReorient(item);

}

if (!(current == nullNode)

return

current = new Node(item, nullNode, nullNode);

if (item.CompareTo(parent.element) < 0)

parent.left = current;

else

parent.right = current;

HandleReorient(item);

}

public string FindMin() {

if (this.IsEmpty())

return null;

Node itrNode = header.right;

while(!(itrNode.left == nullNode))

itrNode = itrNode.left;

return itrNode.element;

}

public string FindMax() {

Red–Black Trees 273

if (this.IsEmpty())

return null;

Node itrNode = header.right;

while (!(itrNode.right == nullNode))

itrNode = itrNode.right;

return itrNode.element;

}

public string Find(string e) {

nullNode.element = e;

Node current = header.right;

while (true)

if (e.CompareTo(current.element) < 0)

current = current.left;

else if (e.CompareTo(current.element) > 0)

current = current.right;

else if (! (current == nullNode))

return current.element;

else

return null

}

public void MakeEmpty() {

header.right = nullNode;

}

public bool IsEmpty() {

return (header.right == nullNode);

}

public void PrintRBTree() {

if (this.IsEmpty())

Console.WriteLine("Empty");

else

PrintRB(header.right);

}

public void PrintRB(Node n) {

if (!(n == nullNode)) {

PrintRB(n.left);

Console.WriteLine(n.element);

PrintRB(n.right);

274 ADVANCED DATA STRUCTURES AND ALGORITHMS

}

public void HandleReorient(string item) {

current.Color = RED;

current.left.color = BLACK;

current.right.color = BLACK;

if (parent.color == RED) {

grandParent.color = RED;

if ((item.CompareTo(grandParent.element) < 0) ! =

(item.CompareTo(parent.element))) {

current = Rotate(item, grandParent);

current.color = BLACK;

}

header.right.color = BLACK;

}

}

public Node Rotate(string item, Node parent) {

if (item.CompareTo(parent.element) < 0)

if (item.CompareTo(parent.left.element) < 0)

parent.left = RotateWithLeftChild(parent.left);

else

parent.elft = RotateWithRightChild(parent.left);

return parent.left;

else

if (item.CompareTo(parent.right.element) < 0)

parent.right = RotateWithLeftChild(parent.

right);

else

parent.right = RotateWithRightChild(parent.

right);

return parent.right;

}

public Node RotateWithLeftChild(Node k2) {

Node k1 = k2.left;

k2.left = k1.right;

k1.right = k2;

return k1;

}

Skip Lists 275

public Node RotateWithRightChild(Node k1) {

Node k2 = k1.right;

k1.right = k2.left;

k2.left = k1;

return k2;

}

}

Then HandleReorient method is called whenever a node has two red chil-

dren. The rotate methods are similar to those used with AVL trees. Also,

because dealing with the root node is a special case, the RedBlack class includes

a root sentinel node as well as the nullNode node, which indicates the node

is a reference to null.

SKIP LISTS

Although AVL trees and red–black trees are efficient data structures for search-

ing and sorting data, the rebalancing operations necessary with both data

structures to keep the tree balanced causes a lot of overhead and complex-

ity. There is another data structure we can use, especially for searching, that

provides the efficiency of trees without the worries of rebalancing. This data

structure is called a skip list.

Skip List Fundamentals

Skip lists are built from one of the fundamental data structures for searching—

the linked list. As we know, linked lists are great for insertion and deletion,

but not so good at searching, since we have to travel to each node sequentially.

But there is no reason why we have to travel each link successively. When we

want to go from the bottom of a set of stairs to the top and we want to get

there quickly, what do we do? We take the stairs two or three at a time (or

more if we’re blessed with long legs).

We can implement the same strategy in a linked list by creating different

levels of links. We start with level 0 links which point to the next node in

the list. Then we have a level 1 link, which points to the second node in

the list, skipping one node; a level 2 link, which points to the third node

276 ADVANCED DATA STRUCTURES AND ALGORITHMS

Header 1023 1033 1103 1133 1203 1223

Nothing

FIGURE 15.10. Basic Linked List.

in the list, skipping two nodes; and so on. When we search for an item, we

can start at a high link level and traverse the list until we get to a value

that is greater than the value we’re looking for. We can then back up to the

previous visited node, and move down to the lowest level, searching node by

node until we encounter the searched-for value. To illustrate the difference

between a skip list and a linked list, study the diagrams in Figure 15.10 and

15.11.

Let’s look at how a search is performed on the level 1 skip list shown in

Figure 15.11. The first value we’ll search for is 1133. Looking at the basic

linked list first, we have to travel to four nodes to find 1133. Using a skip

list, though, we only have to travel to two nodes. Clearly, using the skip list

is more efficient for such a search.

Now let’s look at how a search for 1203 is performed with the skip list. The

level 1 links are traversed until the value 1223 is found. This is greater than

1203, so we back up to the node storing the value 1133 and drop down one

level and start using level 0 links. The next node is 1203, so the search ends.

This example makes the skip list search strategy clear. Start at the highest link

level and traverse the list using those links until you reach a value greater

than the value you’re searching for. At that point, back up to the last node

visited and move down to the next link level and repeat the same steps.

Eventually, you will reach the link level that leads you to the searched-for

value.

It turns out that we can make the skip list even more efficient by adding

more links. For example, every fourth node can have a link that points four

nodes ahead, every sixth node can have a link that points six nodes ahead,

Header
1023

1033
1103

1133
1203

1223

Nothing

FIGURE 15.11. Skip List With Links 2 Nodes Ahead (Level 1).

Skip Lists 277

and so on. The problem with this scheme is that when we insert or delete a

node, we have to rearrange a tremendous number of node pointers, making

our skip list much less efficient.

The solution to this problem is to allocate nodes to the link levels randomly.

The first node (after the header) might be a level 2 node, whereas the second

node might be a level 4 node, the third node a level 1 node again, and so

on. Distributing link levels randomly makes the other operations (other than

search) more efficient, and it doesn’t really affect search times. The probability

distribution used to determine how to distribute nodes randomly is based on

the fact that about half the nodes in a skip list will be level 0 nodes, whereas a

quarter of the nodes will be level 1 nodes, 12.5% will be level 2 nodes, 5.75%

will be level 3 nodes, and so on.

All that’s left to explain is how we determine how many levels will be used

in the skip list. The inventor of the skip list, William Pugh, a professor of Com-

puter Science currently at the University of Maryland, worked out a formula in

his paper that first described skip lists (ftp://ftp.cs.umd.edu/pub/skipLists/).

Here it is, expressed in C# code:

(int)(Math.Ceiling(Math.Log(maxNodes) / Math.Log(1 /

PROB)) - 1);

where maxNodes is an approximation of the number of nodes that will be

required and PROB is a probability constant, usually 0.25.

Skip List Implementation

We need two classes for a skip list implementation: a class for nodes and a

class for the skip list itself. Let’s start with the class for nodes.

The nodes we’ll use for this implementation will store a key and a value,

as well as an array for storing pointers to other nodes. Here’s the code:

public class SkipNode {

int key;

Object value;

SkipNode[] link;

public SkipNode(int level, int key, Object value) {

278 ADVANCED DATA STRUCTURES AND ALGORITHMS

this.key = key;

this.value = value;

link = new SkipValue[level];

}

}

Now we’re ready to build the skip list class. The first thing we need to do is

determine which data members we need for the class. Here’s what we’ll need:

� maxLevel: stores the maximum number of levels allowed in the skip list
� level: stores the current level
� header: the beginning node that provides entry into the skip list
� probability: stores the current probability distribution for the link levels
� NIL: a special value that indicates the end of the skip list
� PROB: the probability distribution for the link levels

public class SkipList {

private int maxLevel;

private int level;

private SkipNode header;

private float probability;

private const int NIL = Int32.MaxValue;

private const int PROB = 0.5;

The constructor for the SkipList class is written in two parts: a Public

constructor with a single argument passing in the total number of nodes in

the skip list, and a Private constructor that does most of the work. Let’s view

the methods first before explaining how they work:

private SkipList(float probable, int maxLevel) {

this.probability = probable;

this.maxLevel = maxLevel;

level = 0;

header = new SkipNode(maxLevel, 0, null);

SkipNode nilElement = new SkipNode(maxLevel, NIL, null);

for(int i = 0; i <= maxLevel-1; i++)

header.link(i) = nilElement;

Skip Lists 279

}

public SkipList(long maxNodes) {

this.New(PROB, (int)(Math.Ceiling(Math.Log(maxNodes) /

Math.Log(1/PROB)-1));

}

The Public constructor performs two tasks. First, the node total is passed

into the constructor method as the only parameter in the method. Second,

the Private constructor, where the real work of initializing a skip list object is

performed, is called with two arguments. The first argument is the probability

constant, which we’ve already discussed. The second argument is the formula

for determining the maximum number of link levels for the skip list, which

we’ve also already discussed.

The body of the Private constructor sets the values of the data members,

creates a header node for the skip list, creates a “dummy” node for each of

the header’s links, and then initializes the links to that element.

The first thing we do with a skip list is insert nodes into the list. Here’s the

code for the Insert method of the SkipList class:

public void Insert(int key, Object value) {

SkipNode[] update = new SkipNode[maxLevel];

SkipNode cursor = header;

for(int i = level; i > = level; i--) {

while(cursor.link[i].key < key)

cursor = cursor.link[i];

update[i] = cursor;

}

cursor = cursor.link[0];

if (cursor.key = key)

cursor.value = value;

else {

int newLevel = GenRandomLevel();

if (newlevel > level) {

for(int i = level+1; i <= newLevel-1; i++)

update[i] = header;

level = newLevel;

}

cursor = new SkipNode(newLevel, key, value);

280 ADVANCED DATA STRUCTURES AND ALGORITHMS

for(int i = 0; i <= newLevel-1; i++) {

cursor.link[i] = update[i].link[i];

update[i].link[i] = cursor;

}

}

}

The first thing the method does is determine where in the list to insert

the new SkipNode (the first for loop). Next, the list is checked to see if the

value to insert is already there. If not, then the new SkipNode is assigned a

random link level using the Private method genRandomLevel (we’ll discuss

this method next) and the item is inserted into the list (the line before the last

for loop).

Link levels are determined using the probabilistic method genRandom-

Level. Here’s the code:

private int GenRandomLevel() {

int newLevel = 0;

int ran = Random.Next(0);

while ((newLevel < maxLevel) && (ran < probability))

newLevel++;

return newLevel;

}

Before we cover the Search method, which is the focus of this section, let’s

look at how to perform deletion in a skip list. First, let’s view the code for the

Delete method:

public void Delete(int key) {

SkipNode[] update = new SkipNode[maxLevel+1];

SkipNode cursor = header;

for(int i = level; i > = level; i--) {

while (cursor.link[i].key < key)

cursor = cursor.link[i];

update[i] = cursor;

}

cursor = cursor.link[0];

if (cursor.key == key) {

Skip Lists 281

for(int i = 0; i < level-1; i++)

if (update[i].link[i] == cursor)

update[i].link[i] == cursor.link[i];

while((level > 0) && (header.link[level].key == NIL))

level--;

}

}

This method, like the Insert method, is split into two parts. The first part,

highlighted by the first for loop, finds the item to be deleted in the list. The

second part, highlighted by the if statement, adjusts the links around the

deleted SkipNode and readjusts the levels.

Now we’re ready to discuss the Search method. The method starts at the

highest level, following those links until a key with a higher value than the

key being searched for is found. The method then drops down to the next

lowest level and continues the search until a higher key is found. It drops

down again and continues searching. The method will eventually stop at level

0, exactly one node away from the item in question. Here’s the code:

public Object Search(int key) {

SkipNode cursor = header;

for(int i = level; i <= level-1; i--) {

SkipNode nextElement = cursor.link[i];

while (nextElement.key < key) {

cursor = nextElement;

nextElement = cursor.link[i];

}

cursor = cursor.link[0];

if (cursor.key == key)

return cursor.value;

else

return "Object not found";

}

We’ve now provided enough functionality to implement a SkipList class.

In the exercises at the end of the chapter, you will get a chance to write code

that uses the class.

282 ADVANCED DATA STRUCTURES AND ALGORITHMS

Skip lists offer an alternative to tree-based structures. Most programmers

find them easier to implement and their efficiency is comparable to tree-like

structures. If you are working with a completely or nearly sorted data set, skip

lists are probably a better choice than trees.

SUMMARY

The advanced data structures discussed in this chapter are based on the discus-

sions in Chapter 12 of Weiss (1999). AVL trees and red–black trees offer good

solutions to the balancing problems experienced when using fairly sorted data

with binary search trees. The major drawback to AVL and red–black trees is

that the rebalancing operations come with quite a bit of overhead and can

slow down performance on large data sets.

For extremely large data sets, skip lists offer an alternative even to AVL

and red–black trees. Because skip lists use a linked-list structure versus a tree

structure, rebalancing is unnecessary, making them more efficient in many

situations.

EXERCISES

1. Write FindMin and FindMax methods for the AVLTree class.

2. Using the Timing class, compare the times for the methods implemented

in Exercise 1 to the same methods in the BinarySearchTree class. Your

test program should insert a sorted list of approximately 100 randomly

generated integers into the two trees.

3. Write a deletion method for the AVLTree class that utilizes lazy deletion.

There are several techniques you can use, but a simple one is to simply

add a Boolean field to the Node class that signifies whether or not the node

is marked for deletion. Your other methods must then take this field into

account.

4. Write a deletion method for the RedBlack class that adheres to the red-black

rules.

5. Design and implement a program that compares AVL trees and red–black

trees to skip lists. Which data structure performs the best?

CHAPTER 16

Graphs and Graph Algorithms

The study of networks has become one of the great scientific hotbeds of this

new century, though mathematicians and others have been studying networks

for many hundreds of years. Recent developments in computer technology

(i.e., the Internet), and in social theory (the social network, popularly con-

ceived in the concept of “six degrees of separation”), have put a spotlight on

the study of networks.

In this chapter, we look at how networks are modeled with graphs. We’re

not talking about the graphs such as pie graphs or bar graphs. We define

what a graph is, how they’re represented in VB.NET, and how to implement

important graph algorithms. We also discuss the importance of picking the

correct data representation when working with graphs, since the efficiency of

graph algorithms is dependent on the data structure used.

GRAPH DEFINITIONS

A graph consists of a set of vertices and a set of edges. Think of a map of your

state. Each town is connected with other towns via some type of road. A map

is a type of graph. Each town is a vertex and a road that connects two towns

is an edge. Edges are specified as a pair, (v1, v2), where v1 and v2 are two

vertices in the graph. A vertex can also have a weight, sometimes also called

a cost.

283

284 GRAPHS AND GRAPH ALGORITHMS

A B C

D E F

G H

FIGURE 16.1. A Digraph (Directed Graph).

A graph whose pairs are ordered is called a directed graph, or just a digraph.

An ordered graph is shown in Figure 16.1. If a graph is not ordered, it is

called an unordered graph, or just a graph. An example of an unordered graph

is shown in Figure 16.2.

A path is a sequence of vertices in a graph such that all vertices are connected

by edges. The length of a path is the number of edges from the first vertex in

the path to the last vertex. A path can also consist of a vertex to itself, which

is called a loop. Loops have a length of 0.

A cycle is a path of at least 1 in a directed graph so that the beginning vertex

is also the ending vertex. In a directed graph, the edges can be the same edge,

but in an undirected graph, the edges must be distinct.

An undirected graph is considered connected if there is a path from every

vertex to every other vertex. In a directed graph, this condition is called

strongly connected. A directed graph that is not strongly connected, but is

considered connected, is called weakly connected. If a graph has a edge between

every set of vertices, it is said to be a complete graph.

REAL WORLD SYSTEMS MODELED BY GRAPHS

Graphs are used to model many different types of real world systems. One

example is traffic flow. The vertices represent street intersections and the

1 2 3

4 5 6

FIGURE 16.2. An Unordered Graph.

The Graph Class 285

edges represent the streets themselves. Weighted edges can be used to rep-

resent speed limits or the number of lanes. Modelers can use the system

to determine best routes and streets that are likely to suffer from traffic

jams.

Any type of transportation system can be modeled using a graph. For exam-

ple, an airline can model their flight system using a graph. Each airport is a

vertex and each flight from one vertex to another is an edge. A weighted

edge can represent the cost of a flight from one airport to another, or per-

haps the distance from one airport to another, depending on what is being

modeled.

THE GRAPH CLASS

At first glance, a graph looks much like a tree and you might be tempted to try

to build a graph class like a tree. There are problems with using a reference-

based implementation, however, so we will look at a different scheme for

representing both vertices and edges.

Representing Vertices

The first step we have to take to build a Graph class is to build a Vertex class

to store the vertices of a graph. This class has the same duties the Node class

had in the LinkedList and BinarySearchTree classes.

The Vertex class needs two data members: one for the data that iden-

tifies the vertex, and the other a Boolean member we use to keep track

of “visits” to the vertex. We call these data members label and wasVisited,

respectively.

The only method we need for the class is a constructor method that allows

us to set the label and wasVisited data members. We won’t use a default con-

structor in this implementation because every time we make a first reference

to a vertex object, we will be performing instantiation.

Here’s the code for the Vertex class:

public class Vertex {

public bool wasVisited;

public string label;

286 GRAPHS AND GRAPH ALGORITHMS

public Vertex(string label) {

this.label = label;

wasVisited = false;

}

}

We will store the list of vertices in an array and will reference them in the

Graph class by their position in the array.

Representing Edges

The real information about a graph is stored in the edges, since the edges

detail the structure of the graph. As we mentioned earlier, it is tempting to

represent a graph like a binary tree, but doing so would be a mistake. A

binary tree has a fairly fixed representation, since a parent node can only

have two child nodes, whereas the structure of a graph is much more flexi-

ble. There can be many edges linked to a single vertex or just one edge, for

example.

The method we’ll choose for representing the edges of a graph is called an

adjacency matrix. This is a two-dimensional array where the elements indicate

whether an edge exists between two vertices. Figure 16.3 illustrates how an

adjacency matrix works for the graph in the figure.

The vertices are listed as the headings for the rows and columns. If

an edge exists between two vertices, a 1 is placed in that position. If an

edge doesn’t exist, a 0 is used. Obviously, you can also use Boolean values

here.

V0 0 0 1 0 0

V0 V1 V2 V3 V4

V1 0 0 1 0 0

V2 1 1 0 1 1

V3 0 0 1 0 0

V4 0 0 1 0 0
3 4

0

2

1

FIGURE 16.3. An Adjacency Matrix.

The Graph Class 287

Building a Graph

Now that we have a way to represent vertices and edges, we’re ready to build

a graph. First, we need to build a list of the vertices in the graph. Here is some

code for a small graph that consists of four vertices:

int nVertices = 0;

vertices[nVertices] = new Vertex("A");

nVertices++;

vertices[nVertices] = new Vertex("B");

nVertices++;

vertices[nVertices] = new Vertex("C");

nVertices++;

vertices[nVertices] = new Vertex("D");

Then we need to add the edges that connect the vertices. Here is the code

for adding two edges:

adjMatrix[0,1] = 1;

adjMatrix[1,0] = 1;

adjMatrix[1,3] = 1;

adjMatrix[3,1] = 1;

This code states that an edge exists between vertices A and B and that an edge

exists between vertices B and D.

With these pieces in place, we’re ready to look at a preliminary definition

of the Graph class (along with the definition of the Vertex class):

public class Vertex {

public bool wasVisited;

public string label;

public Vertex(string label) {

this.label = label;

wasVisited = false;

}

}

288 GRAPHS AND GRAPH ALGORITHMS

public class Graph {

private const int NUM_VERTICES = 20;

private Vertex[] vertices;

private int[,] adjMatrix;

int numVerts;

public Graph() {

vertices = new Vertex[NUM_VERTICES];

adjMatrix = new int[NUM_VERTICES, NUM_VERTICES];

numVerts = 0;

for(int j = 0; j <= NUM_VERTICES; j++)

for(int k = 0; k <= NUMVERTICES-1; k++)

adjMatrix[j,k] = 0;

}

public void AddVertex(string label) {

vertices[numVerts] = new Vertex(label);

numVerts++;

}

public void AddEdge(int start, int eend) {

adjMatrix[start, eend] = 1;

adjMatrix[eend, start] = 1;

}

public void ShowVertex(int v) {

Console.Write(vertices[v].label + " ");

}

}

The constructor method redimensions the vertices array and the adjacency

matrix to the number specified in the constant NUM VERTICES. The data

member numVerts stores the current number in the vertex list so that it is

initially set to zero, since arrays are zero-based. Finally, the adjacency matrix

is initialized by setting all elements to zero.

The AddVertex method takes a string argument for a vertex label, instanti-

ates a new Vertex object, and adds it to the vertices array. The AddEdge method

takes two integer values as arguments. These integers represent to vertices and

indicate that an edge exists between them. Finally, the showVertex method

displays the label of a specified vertex.

A First Graph Application: Topological Sorting 289

CS 1 CS 2 . . .

Algorithms

Assembly Language

Data
Structures

Operating
Systems

FIGURE 16.4. A Directed Graph Model of Computer Science Curriculum Sequence.

A FIRST GRAPH APPLICATION: TOPOLOGICAL SORTING

Topological sorting involves displaying the specific order in which a sequence

of vertices must be followed in a directed graph. The sequence of courses a

college student must take on their way to a degree can be modeled with a

directed graph. A student can’t take the Data Structures course until they’ve

had the first two introductory Computer Science courses, as an example.

Figure 16.4 depicts a directed graph modeling part of the typical Computer

Science curriculum.

A topological sort of this graph would result in the following sequence:

1. CS1

2. CS2

3. Assembly Language

4. Data Structures

5. Operating Systems

6. Algorithms

Courses 3 and 4 can be taken at the same time, as can 5 and 6.

An Algorithm for Topological Sorting

The basic algorithm for topological sorting is very simple:

1. Find a vertex that has no successors.

2. Add the vertex to a list of vertices.

3. Remove the vertex from the graph.

4. Repeat Step 1 until all vertices are removed.

290 GRAPHS AND GRAPH ALGORITHMS

Of course, the challenge lies in the details of the implementation but this is

the crux of topological sorting.

The algorithm will actually work from the end of the directed graph to the

beginning. Look again at Figure 16.4. Assuming that Operating Systems and

Algorithms are the last vertices in the graph (ignoring the ellipsis), neither

of them have successors and so they are added to the list and removed from

the graph. Next come Assembly Language and Data Structures. These vertices

now have no successors and so they are removed from the list. Next will be

CS2. Its successors have been removed so it is added to the list. Finally, we’re

left with CS1.

Implementing the Algorithm

We need two methods for topological sorting—a method to determine if a

vertex has no successors and a method for removing a vertex from a graph.

Let’s look at the method for determining no successors first.

A vertex with no successors will be found in the adjacency matrix on a row

where all the columns are zeroes. Our method will use nested for loops to

check each set of columns row by row. If a 1 is found in a column, then the

inner loop is exited and the next row is tried. If a row is found with all zeroes

in the columns, then that row number is returned. If both loops complete

and no row number is returned, then a −1 is returned, indicating there is no

vertex with no successors. Here’s the code:

public int NoSuccessors() {

bool isEdge;

for(int row = 0; row <= numVertices-1; row++) {

isEdge = false;

for(int col = 0 col <= numVertices-1; col++)

if (adjMatrix[row, col] > 0) {

isEdge = true;

break;

}

}

if (!(isEdge))

return row;

}

return -1;

}

A First Graph Application: Topological Sorting 291

Next we need to see how to remove a vertex from the graph. The first thing

we have to do is remove the vertex from the vertex list. This is easy. Then we

need to remove the row and column from the adjacency matrix, followed by

moving the rows and columns above and to the right of the vertex are moved

down and to the left to fill the void left by the removed vertex.

To perform this operation, we write a method named delVertex, which

includes two helper methods, moveRow and moveCol. Here is the code:

public void DelVertex(int vert)

if (vert ! = numVertices-1) {

for(int j = vert; j <= numVertices-1; j++)

vertices[j] = vertices[j+1];

for(int row = vert; row <= numVertices-1; row++)

moveRow[row, numVertices];

for(int col = vert; col <= numVertices-1; col++)

moveCol[row, numVertices-1];

}

}

private void MoveRow(int row, int length) {

for(int col = 0; col <= length-1; col++)

adjMatrix[row, col] = adjMatrix[row+1, col];

}

private void MoveCol(int col, int length) {

for(int row = 0; row <= length-1; row++)

adjMatrix[row, col] = adjMatrix[row, col+1];

}

Now we need a method to control the sorting process. We’ll show the code

first and then explain what it does:

public void TopSort() {

int origVerts = numVertices;

while(numVertices > 0) {

int currVertex = noSuccessors();

if (currVertex == -1) {

Console.WriteLine("Error: graph has cycles.");

return;

292 GRAPHS AND GRAPH ALGORITHMS

}

gStack.Push(vertices[currVertex].label);

DelVertex(currVertex);

}

Console.Write("Topological sorting order: ");

while (gStack.Count > 0)

Console.Write(gStack.Pop() + " ");

}

The TopSort method loops through the vertices of the graph, finding a

vertex with no successors, deleting it, and then moving on to the next vertex.

Each time a vertex is deleted, its label is pushed onto a stack. A stack is a

convenient data structure to use because the first vertex found is actually the

last (or one of the last) vertices in the graph. When the TopSort method is

complete, the contents of the stack will have the last vertex pushed down to

the bottom of the stack and the first vertex of the graph at the top of the stack.

We merely have to loop through the stack popping each element to display

the correct topological order of the graph.

These are all the methods we need to perform topological sorting on a

directed graph. Here’s a program that tests our implementation:

static void Main() {

Graph theGraph = new Graph();

theGraph.AddVertex("A");

theGraph.AddVertex("B");

theGraph.AddVertex("C");

theGraph.AddVertex("D");

theGraph.AddEdge(0, 1);

theGraph.AddEdge(1, 2);

theGraph.AddEdge(2, 3);

theGraph.AddEdge(3, 4);

theGraph.TopSort();

Console.WriteLine();

Console.WriteLine("Finished.");

}

The output from this program shows that the order of the graph is A B C D.

Searching a Graph 293

Now let’s look at how we would write the program to sort the graph shown

in Figure 16.4:

static void Main() {

Graph theGraph = new Graph();

theGraph.AddVertex("CS1");

theGraph.AddVertex("CS2");

theGraph.AddVertex("DS");

theGraph.AddVertex("OS");

theGraph.AddVertex("ALG");

theGraph.AddVertex("AL");

theGraph.AddEdge(0, 1);

theGraph.AddEdge(1, 2);

theGraph.AddEdge(1, 5);

theGraph.AddEdge(2, 3);

theGraph.AddEdge(2, 4);

theGraph.TopSort();

Console.WriteLine();

Console.WriteLine("Finished.");

}

The output from this program is:

SEARCHING A GRAPH

Determining which vertices can be reached from a specified vertex is a com-

mon activity performed on graphs. We might want to know which roads lead

from one town to other towns on the map, or which flights can take us from

one airport to other airports.

These operations are performed on a graph using a search algorithm. There

are two fundamental searches we can perform on a graph: a depth-first search

and a breadth-first search. In this section, we examine each of these search

algorithms.

294 GRAPHS AND GRAPH ALGORITHMS

K

L

M

H

A

I

J

E

F

G

B

C

D

11

12

8

9

710 4

1

5

6

2

3

FIGURE 16.5. Depth-First Search.

Depth-First Search

Depth-first search involves following a path from the beginning vertex until it

reaches the last vertex, then backtracking and following the next path until it

reaches the last vertex, and so on until there are no more paths left. A diagram

of a depth-first search is shown in Figure 16.5.

At a high level, the depth-first search algorithm works like this: First, pick

a starting point, which can be any vertex. Visit the vertex, push it onto a stack,

and mark it as visited. Then you go to the next vertex that is unvisited, push

it on the stack, and mark it. This continues until you reach the last vertex.

Then you check to see if the top vertex has any unvisited adjacent vertices.

If it doesn’t, then you pop it off the stack and check the next vertex. If you

find one, you start visiting adjacent vertices until there are no more, check for

more unvisited adjacent vertices, and continue the process. When you finally

reach the last vertex on the stack and there are no more adjacent, unvisited

vertices, you’ve performed a depth-first search.

The first piece of code we have to develop is a method for getting an

unvisited, adjacent matrix. Our code must first go to the row for the specified

vertex and determine if the value 1 is stored in one of the columns. If so, then

an adjacent vertex exists. We can then easily check to see if the vertex has

been visited or not. Here’s the code for this method:

private int GetAdjUnvisitedVertex(int v) {

for(int j = 0; j <= numVertices-1; j++)

if ((adjMatrix(v,j) = 1) && (vertices[j].WasVisited_

== false))

return j;

return -1;

}

Searching a Graph 295

Now we’re ready to look at the method that performs the depth-first search:

public void DepthFirstSearch() {

vertices[0].WasVisited = true;

ShowVertex(0);

gStack.Push(0);

int v;

while (gStack.Count > 0) {

v = GetAdjUnvisitedVertex(gStack.Peek());

if (v == -1)

gStack.Pop();

else {

vertices[v].WasVisited = true;

ShowVertex(v);

gStack.Push(v);

}

}

for(int j = 0; j <= numVertices-1; j++)

vertices[j].WasVisited = false;

}

Here is a program that performs a depth-first search on the graph shown

in Figure 16.5:

static void Main() {

Graph aGraph = new Graph();

aGraph.AddVertex("A");

aGraph.AddVertex("B");

aGraph.AddVertex("C");

aGraph.AddVertex("D");

aGraph.AddVertex("E");

aGraph.AddVertex("F");

aGraph.AddVertex("G");

aGraph.AddVertex("H");

aGraph.AddVertex("I");

aGraph.AddVertex("J");

aGraph.AddVertex("K");

aGraph.AddVertex("L");

aGraph.AddVertex("M");

296 GRAPHS AND GRAPH ALGORITHMS

aGraph.AddEdge(0, 1);

aGraph.AddEdge(1, 2);

aGraph.AddEdge(2, 3);

aGraph.AddEdge(0, 4);

aGraph.AddEdge(4, 5);

aGraph.AddEdge(5, 6);

aGraph.AddEdge(0, 7);

aGraph.AddEdge(7, 8);

aGraph.AddEdge(8, 9);

aGraph.AddEdge(0, 10);

aGraph.AddEdge(10, 11);

aGraph.AddEdge(11, 12);

aGraph.DepthFirstSearch();

Console.WriteLine();

}

The output from this program is:

Breadth-First Search

A breadth-first search starts at a first vertex and tries to visit vertices as close to

the first vertex as possible. In essence, this search moves through a graph layer

by layer, examining the layers closer to the first vertex first and moving down

to the layers farthest away from the starting vertex. Figure 16.6 demonstrates

how breadth-first search works.

The algorithm for breadth-first search uses a queue instead of a stack,

though a stack could be used. The algorithm is as follows:

1. Find an unvisited vertex that is adjacent to the current vertex, mark it as

visited, and add to a queue.

Searching a Graph 297

K

L

M

H

A

I

J

E

F

G

B

C

D

12

8

9

7

4

1

5

11

3

6

2

10

FIGURE 16.6. Breath-First Search.

2. If an unvisited, adjacent vertex can’t be found, remove a vertex from the

queue (as long as there is a vertex to remove), make it the current vertex,

and start over.

3. If the second step can’t be performed because the queue is empty, the

algorithm is finished.

Now let’s look at the code for the algorithm:

public void BreadthFirstSearch() {

Queue gQueue = new Queue();

vertices[0].WasVisited = true;

ShowVertex(0);

gQueue.EnQueue(0);

int vert1, vert2;

while (gQueue.Count > 0) {

vert1 = gQueue.Dequeue();

vert2 = GetAdjUnvisitedVertex(vert1);

while (vert2 ! = -1) {

vertices[vert2].WasVisited = true;

ShowVertex(vert2);

gQueue.Enqueue(vert2);

vert2 = GetAdjUnvisitedVertex(vert1);

}

}

for(int i = 0; i <= numVertices-1; i++)

vertices[index].WasVisited = false;

}

298 GRAPHS AND GRAPH ALGORITHMS

Notice that there are two loops in this method. The outer loop runs while

the queue has data in it, and the inner loop checks adjacent vertices to see if

they’ve been visited. The for loop simply cleans up the vertices array for other

methods.

A program that tests this code, using the graph from Figure 16.6, is shown

as follows:

static void Main() {

Graph aGraph = new Graph();

aGraph.AddVertex("A");

aGraph.AddVertex("B");

aGraph.AddVertex("C");

aGraph.AddVertex("D");

aGraph.AddVertex("E");

aGraph.AddVertex("F");

aGraph.AddVertex("G");

aGraph.AddVertex("H");

aGraph.AddVertex("I");

aGraph.AddVertex("J");

aGraph.AddVertex("K");

aGraph.AddVertex("L");

aGraph.AddVertex("M");

aGraph.AddEdge(0, 1);

aGraph.AddEdge(1, 2);

aGraph.AddEdge(2, 3);

aGraph.AddEdge(0, 4);

aGraph.AddEdge(4, 5);

aGraph.AddEdge(5, 6);

aGraph.AddEdge(0, 7);

aGraph.AddEdge(7, 8);

aGraph.AddEdge(8, 9);

aGraph.AddEdge(0, 10);

aGraph.AddEdge(10, 11);

aGraph.AddEdge(11, 12);

Console.WriteLine();

aGraph.BreadthFirstSearch();

}

Minimum Spanning Trees 299

The output from this program is:

MINIMUM SPANNING TREES

When a network is first designed, it is possible that there can be more than

the minimum number of connections between the nodes of the network. The

extra connections are a wasted resource and should be eliminated, if possible.

The extra connections also just make the network unnecessarily complex for

others to study and understand. What we want is a network that contains just

the minimum number of connections necessary to connect the nodes. Such

a network, when applied to a graph, is called a minimum spanning tree.

A minimum spanning tree is called such because it is constructed from the

minimum of number of edges necessary to cover every vertex (spanning), and

it is in tree form because the resulting graph is acyclic. There is one important

point you need to keep in mind: One graph can contain multiple minimum

spanning trees; the minimum spanning tree you create depends entirely on

the starting vertex.

A Minimum Spanning Tree Algorithm

Figure 16.7 depicts a graph for which we want to construct a minimum span-

ning tree.

The algorithm for a minimum spanning tree is really just a graph search

algorithm (either depth-first or breadth-first) with the additional component

of recording each edge that is traveled. The code also looks similar. Here’s the

method:

public void Mst() {

vertices[0].WasVisited = true;

gStack.Push(0);

300 GRAPHS AND GRAPH ALGORITHMS

B

A

D

G

F

C

E

FIGURE 16.7. Graph For Minimum Spanning Tree.

int currVertex, ver;

while (gStack.Count > 0) {

currVertex = gStack.Peek();

ver = GetAdjUnvisitedVertex(currVertex);

if (ver == -1)

gStack.Pop();

else {

vertices[ver].WasVisited = true;

gStack.Push(ver);

ShowVertex(currVertex);

ShowVertex(ver);

Console.Write(" ");

}

}

for (int j = 0; j <= numVertices-1; j++)

vertices[j].WasVisited = false;

}

If you compare this method to the method for depth-first search, you’ll

see that the current vertex is recorded by calling the showVertex method

with the current vertex as the argument. Calling this method twice, as shown

Minimum Spanning Trees 301

in the code, creates the display of edges that define the minimum spanning

tree.

Here is a program that creates the minimum spanning tree for the graph in

Figure 16.7:

static void Main() {

Graph aGraph = new Graph();

aGraph.AddVertex("A");

aGraph.AddVertex("B");

aGraph.AddVertex("C");

aGraph.AddVertex("D");

aGraph.AddVertex("E");

aGraph.AddVertex("F");

aGraph.AddVertex("G");

aGraph.AddEdge(0, 1);

aGraph.AddEdge(0, 2);

aGraph.AddEdge(0, 3);

aGraph.AddEdge(1, 2);

aGraph.AddEdge(1, 3);

aGraph.AddEdge(1, 4);

aGraph.AddEdge(2, 3);

aGraph.AddEdge(2, 5);

aGraph.AddEdge(3, 5);

aGraph.AddEdge(3, 4);

aGraph.AddEdge(3, 6);

aGraph.AddEdge(4, 5);

aGraph.AddEdge(4, 6);

aGraph.AddEdge(5, 6);

Console.WriteLine();

aGraph.Mst();

}

The output from this program is:

302 GRAPHS AND GRAPH ALGORITHMS

B

A

D

G

F

C

E

FIGURE 16.8. The Minimum Spanning Tree for Figure 16.7.

A diagram of the minimum spanning tree is shown in Figure 16.8.

FINDING THE SHORTEST PATH

One of the most common operations performed on graphs is finding the

shortest path from one vertex to another. For vacation, you are going to travel

to 10 major league baseball cities to watch games over a two-week period. You

want to minimize the number of miles you have to drive to visit all ten cities

using a shortest-path algorithm. Another shortest-path problem is creating a

network of computers, where the cost could be the time to transmit between

two computers or the cost of establishing and maintaining the connection. A

shortest-path algorithm can determine the most effective way you can build

the network.

Weighted Graphs

We mentioned weighted graphs at the beginning of the chapter. Each edge

in the graph has an associated weight, or cost. A weighted graph is shown

in Figure 16.9. Weighted graphs can have negative weights, but we will limit

our discussion here to positive weights. We also focus here only on directed

graphs.

Finding the Shortest Path 303

B C

HGF

A

D E
4

4

4

4 3

5

5 4

5

5

5 5

FIGURE 16.9. A Weighted Graph.

Dijkstra’s Algorithm for Determining the Shortest Path

One of the most famous algorithms in computer science is Dijkstra’s algorithm

for determining the shortest path of a weighted graph, named for the late

computer science Edsger Dijkstra, who discovered the algorithm in the late

1950s.

Dijkstra’s algorithm finds the shortest path from any specified vertex to

any other vertex, and it turns out, to all the other vertices in the graph. It

does this by using what is commonly termed a greedy strategy or algorithm. A

greedy algorithm (about which we’ll have more to say in Chapter 17) breaks

a problem into pieces, or stages, determining the best solution at each stage,

with each subsolution contributing to the final solution. A classic example

of a greedy algorithm is making change with coins. For example, if you buy

something at the store for 74 cents using a dollar bill, the cashier, if he or

she is using a greedy algorithm and wants to minimize the number of coins

returned, will return to you a quarter and a penny. Of course, there are other

solutions to making change for 26 cents, but a quarter and a penny is the

optimal solution.

We use Dijkstra’s algorithm by creating a table to store known distances

from the starting vertex to the other vertices in the graph. Each adjacent vertex

from the original vertex is visited, and the table is updated with information

about the weight of the adjacent edge. If a distance between two vertices is

known, but a shorter distance is discovered by visiting a new vertex, that

information is changed in the table. The table is also updated by indicating

which vertex leads to the shortest path.

The following tables show us the progress the algorithm makes as it works

through the graph. The first table shows us the table values before vertex A is

visited (the value Infinity indicates we don’t know the distance, and in code

we use a large value that cannot represent a weight):

304 GRAPHS AND GRAPH ALGORITHMS

Vertex Visited Weight Via Path

A False 0 0

B False Infinity n/a

C False Infinity n/a

D False Infinity n/a

E False Infinity n/a

F False Infinity n/a

G False Infinity n/a

After A is visited, the table looks like this:

Vertex Visited Weight Via Path

A True 0 0

B False 2 A

C False Infinity n/a

D False 1 A

E False Infinity n/a

F False Infinity n/a

G False Infinity n/a

Next we visit vertex D:

Vertex Visited Weight Via Path

A True 0 0

B False 2 A

C False 3 D

D True 1 A

E False 3 D

F False 9 D

G False 5 D

Finding the Shortest Path 305

The vertex B is next visited:

Vertex Visited Weight Via Path

A True 0 0

B True 2 A

C False 3 D

D True 1 A

E False 3 D

F False 9 D

G False 5 D

And so on until we visit the last vertex G:

Vertex Visited Weight Via Path

A True 0 0

B True 2 A

C True 3 D

D True 1 A

E True 3 D

F True 6 D

G False 5 D

Code for Dijkstra’s Algorithm

The first piece of code for the algorithm is the Vertex class, which we’ve seen

before:

public class Vertex {

public string label;

public bool isInTree;

306 GRAPHS AND GRAPH ALGORITHMS

public Vertex(string lab) {

label = lab;

isInTree = false;

}

}

We also need a class that helps keep track of the relationship between a

distant vertex and the original vertex used to compute shortest paths. This is

called the DistOriginal class:

public class DistOriginal {

public int distance;

public int parentVert;

public DistOriginal(int pv, int d) {

distance = d;

parentVert = pv;

}

}

The Graph class that we’ve used before now has a new set of methods

for computing shortest paths. The first of these is the Path() method, which

drives the shortest path computations:

public void Path() {

int startTree = 0;

vertexList[startTree].isInTree = true;

nTree = 1;

for(int j = 0; j <= nVerts-1; j++) {

int tempDist = adjMat(startTree, j);

sPath[j] = new DistOriginal(startTree, tempDist);

}

while (nTree < nVerts) {

int indexMin = GetMin();

int minDist = sPath[indexMin].distance;

currentVert = indexMin;

startToCurrent = sPath[indexMin].distance;

vertexList[currentVert].isInTree = true;

Finding the Shortest Path 307

nTree++;

AdjustShortPath();

}

DisplayPaths();

nTree = 0;

for(int j = 0; j <= nVerts-1; j++)

vertexList[j].isInTree = false;

}

This method uses two other helper methods, getMin and adjustShortPath.

Those methods are explained shortly. The for loop at the beginning of the

method looks at the vertices reachable from the beginning vertex and places

them in the sPath array. This array holds the minimum distances from the

different vertices and will eventually hold the final shortest paths.

The main loop (the while loop) performs three operations:

1. Find the entry in sPath with the shortest distance.

2. Make this vertex the current vertex.

3. Update the sPath array to show distances from the current vertex.

Much of this work is performed by the getMin and adjustShortPath methods:

public int GetMin() {

double minDist = Double.PositiveInfinity;

int indexMin = 0;

for(int j = 1; j <= nVerts-1; j++)

if (!(vertexList[j].isInTree) &&

(sPath[j].distance < minDist)) {

minDist = sPath[j].distance;

indexMin = j;

}

return indexMin;

}

public void AdjustShortPath() {

int column = 1;

while (column < nVerts)

if (vertexList[column].isInTree)

column++;

308 GRAPHS AND GRAPH ALGORITHMS

else {

int currentToFringe = adjMat[currentVert, column];

int startToFringe = startToCurrent +

currentToFringe;

int sPathDist = sPath[column].distance;

if (startToFringe < sPathDist) {

sPath[column].parentVert = currentVert;

sPath[column].distance = startToFringe;

}

}

}

}

The getMin method steps through the sPath array until the minimum distance

is determined, which is then returned by the method. The adjustShortPath

method takes a new vertex, finds the next set of vertices connected to this

vertex, calculates shortest paths, and updates the sPath array until a shorter

distance is found.

Finally, the displayPaths method shows the final contents of the sPath array.

To make the graph available for other algorithms, the nTree variable is set to

0 and the isInTree flags are all set to false.

To put all this into context, here is a complete application that includes all

the code for computing the shortest paths using Dijkstra’s algorithm, along

with a program to test the implementation:

public class DistOriginal {

int distance;

int parentVert;

public DistOriginal(int pv, int d) {

distance = d;

parentVert = pv;

}

}

public class Vertex {

public string label;

public bool isInTree;

public Vertex(string lab) {

label = lab;

Finding the Shortest Path 309

isInTree = false;

}

}

public class Graph {

private const int max_verts = 20;

int infinity = 1000000;

Vertex[] vertexList;

int[,] adjMat;

int nVerts;

int nTree;

DistOriginal[] sPath;

int currentVert;

int startToCurrent;

public Graph() {

vertexList = new Vertex(max_verts);

adjMat = new int(max_verts, max_verts);

nVerts = 0;

nTree = 0;

for(int j = 0; j <= max_verts-1; j++)

for(int k = 0;, <= max_verts-1; k++)

adjMat[j,k] = infinity;

sPath = new DistOriginal[max_verts];

}

public void AddVertex(string lab) {

vertexList[nVerts] = new Vertex[lab];

nVerts++;

}

public void AddEdge(int start, int theEnd, int weight){

adjMat[start, theEnd] = weight;

}

public void Path() {

int startTree = 0;

vertexList[startTree].isInTree = true;

nTree = 1;

for(int j = 0; j <= nVerts; j++) {

int tempDist = adjMat[startTree, j];

sPath[j] = new DistOriginal[startTree, tempDist];

}

310 GRAPHS AND GRAPH ALGORITHMS

while (nTree < nVerts) {

int indexMin = GetMin();

int minDist = sPath[indexMin].distance;

currentVert = indexMin;

startToCurrent = sPath[indexMin].distance;

vertexList[currentVert].isInTree = true;

nTree++;

AdjustShortPath();

}

DisplayPaths();

nTree = 0;

for(int j = 0; j <= nVerts-1; j++)

vertexList[j].isInTree = false;

}

public int GetMin() {

int minDist = infinity;

int indexMin = 0;

for(int j = 1; j <= nVerts-1; j++)

if (!(vertexList[j].isInTree) &&

sPath[j].distance < minDist)) {

minDist = sPath[j].distance;

indexMin = j;

}

return indexMin;

}

public void AdjustShortPath() {

int column = 1;

while (column < nVerts)

if (vertexList[column].isInTree)

column++;

else {

int currentToFring = adjMat[currentVert, column];

int startToFringe = startToCurrent +

currentToFringe;

int sPathDist = sPath[column].distance;

if (startToFringe < sPathDist) {

sPath[column].parentVert = currentVert;

sPath[column].distance = startToFringe;

}

Finding the Shortest Path 311

column++;

}

}

}

public void DisplayPaths() {

for(int j = 0; j <= nVerts-1; j++) {

Console.Write(vertexList[j].label + "=");

if (sPath[j].distance = infinity)

Console.Write("inf");

else

Console.Write(sPath[j].distance);

string parent = vertexList[sPath[j].parentVert].

label;

Console.Write("(" + parent + ") ");

}

}

class chapter16 {

static void Main() {

Graph theGraph = new Graph();

theGraph.AddVertex("A");

theGraph.AddVertex("B");

theGraph.AddVertex("C");

theGraph.AddVertex("D");

theGraph.AddVertex("E");

theGraph.AddVertex("F");

theGraph.AddVertex("G");

theGraph.AddEdge(0, 1, 2);

theGraph.AddEdge(0, 3, 1);

theGraph.AddEdge(1, 3, 3);

theGraph.AddEdge(1, 4, 10);

theGraph.AddEdge(2, 5, 5);

theGraph.AddEdge(2, 0, 4);

theGraph.AddEdge(3, 2, 2);

theGraph.AddEdge(3, 5, 8);

theGraph.AddEdge(3, 4, 2);

theGraph.AddEdge(3, 6, 4);

theGraph.AddEdge(4, 6, 6);

theGraph.AddEdge(6, 5, 1);

Console.WriteLine();

312 GRAPHS AND GRAPH ALGORITHMS

Console.WriteLine("Shortest paths:");

Console.WriteLine();

theGraph.Path();

Console.WriteLine();

}

}

The output from this program is:

SUMMARY

Graphs are one of the most important data structures used in computer sci-

ence. Graphs are used regularly to model everything from electrical circuits

to university course schedules to truck and airline routes.

Graphs are made up of vertices that are connected by edges. Graphs can

be searched in several ways; the two most common are depth-first search

and breadth-first search. Another important algorithm performed on graph is

determining the minimum spanning tree, which is the minimum number of

edges necessary to connect all the vertices in a graph.

The edges of a graph can have weights, or costs. When working with

weighted graphs, an important operation is determining the shortest path

from a starting vertex to the other vertices in the graph. This chapter looked

at one algorithm for computing shortest paths, Dijkstra’s algorithm.

Weiss (1999) contains a more technical discussion of the graph algorithms

covered in this chapter, whereas LaFore (1998) contains very good practical

explanations of all the algorithms we covered here.

EXERCISES

1. Build a weighted graph that models a section of your home state. Use

Dijkstra’s algorithm to determine the shortest path from a starting vertex

to the last vertex.

Exercises 313

2. Take the weights off the graph in Exercise 1 and build a minimum spanning

tree.

3. Still using the graph from Exercise 1, write a Windows application that

allows the user to search for a vertex in the graph using either a depth-first

search or a breadth-first search.

4. Using the Timing class, determine which of the searches implemented in

Exercise 3 is more efficient.

CHAPTER 17

Advanced Algorithms

In this chapter, we look at two advanced topics: dynamic programming and

greedy algorithms. Dynamic programming is a technique that is often consid-

ered to be the reverse of recursion—a recursive solution starts at the top and

breaks the problem down solving all small problems until the complete prob-

lem is solved; a dynamic programming solution starts at the bottom, solving

small problems and combining them to form an overall solution to the big

problem.

A greedy algorithm is an algorithm that looks for “good solutions” as it works

toward the complete solution. These good solutions, called local optima, will

hopefully lead to the correct final solution, called the global optimum. The term

“greedy” comes from the fact these algorithms take whatever solution looks

best at the time. Often, greedy algorithms are used when it is almost impossible

to find a complete solution, due to time and/or space considerations, yet a

suboptimal solution is acceptable.

DYNAMIC PROGRAMMING

Recursive solutions to problems are often elegant but inefficient. The C#

compiler, along with other language compilers, will not efficiently translate

the recursive code to machine code, resulting in an inefficient, though elegant

computer program.

314

Dynamic Programming 315

Many programming problems that have recursive solutions can be rewrit-

ten using the techniques of dynamic programming. A dynamic programming

solution builds a table, usually using an array, which holds the results of the

different subsolutions. Finally, when the algorithm is complete, the solution

is found in a distinct spot in the table.

A Dynamic Programming Example: Computing
Fibonacci Numbers

The Fibonacci numbers can be described by the following sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

There is a simple recursive program you can use to generate any specific

number in this sequence. Here is the code for the function:

static long recurFib(int n) {

if (n < 2)

return n

else

return recurFib(n - 1) + recurFib(n - 2);

}

And here is a program that uses the function:

static void Main() {

int num = 5;

long fibNumber = recurFib(num);

Console.Write(fibNumber);

}

The problem with this function is that it is extremely inefficient. We can see

exactly how inefficient this recursion is by examining the tree in Figure 17.1.

The problem with the recursive solution is that too many values are recom-

puted during a recursive call. If the compiler could keep track of the values

that are already computed, the function would not be nearly so inefficient.

We can design an algorithm using dynamic programming techniques that is

much more efficient than the recursive algorithm.

316 ADVANCED ALGORITHMS

recurFib 4

recurFib 3 recurFib 2

recurFib 3

recurFib 2 recurFib 1

recurFib 1 recurFib ørecurFib 1 recurFib ørecurFib 2 recurFib 1

recurFib 1 recurFib ø

recurFib 5

1

1 1 0

1 0

1 0

FIGURE 17.1. Tree generated from Recursive Fibonacci Computation.

An algorithm designed using dynamic programming techniques starts by

solving the simplest subproblem it can solve, using that solution to solve

more complex subproblems until the problem is solved. The solutions to

each subproblem are typically stored in an array for easy access.

We can easily comprehend the essence of dynamic programming by exam-

ining the dynamic programming algorithm for computing a Fibonacci num-

ber. Here’s the code followed by an explanation of how it works:

static long iterFib(int n) {

int[] val = new int[n];

if ((n == 1) || (n == 2))

return 1;

else {

val[1] = 1;

val[2] = 2;

for(int i = 3; i <= n-1; i++)

val[i] = val[i-1] + val[i-2];

}

return val[n-1];

}

Dynamic Programming 317

The array val is where we store our intermediate results. The first part of

the If statement returns the value 1 if the argument is 1 or 2. Otherwise, the

values 1 and 2 are stored in the indices 1 and 2 of the array. The for loop runs

from 3 to the input argument, assigning each array element the sum of the

previous two array elements, and when the loop is complete, the last value in

the array is returned.

Let’s compare the times it takes to compute a Fibonacci number using both

the recursive version and the iterative version. First, here’s the program we

use for the comparison:

static void Main() {

Timing tObj = new Timing();

Timing tObj1 = new Timing();

int num = 10;

int fibNumber;

tObj.StartTime();

fibNumber = recurFib(num);

tObj.StopTime();

Console.WriteLine("Calculating Fibonacci number: " +

num);

Console.WriteLine(fibNumber + " in: " +

tObj.Result.TotalMilliseconds);

tObj1.StartTime();

fibNumber = iterFib(num);

tObj1.StopTime();

Console.WriteLine(fibNumber + " in: " +

tObj.Result.TotalMilliseconds);

}

If we run this program to test the two functions for small Fibonacci num-

bers, we’ll see little difference, or even see that the recursive function is a little

faster:

318 ADVANCED ALGORITHMS

If we try a larger number, say 20, we get the following results:

For a really large number, such as 35, the disparity is even greater:

This is a typical example of how dynamic programming can help improve

the performance of an algorithm. As we mentioned earlier, a program using

dynamic programming techniques usually utilizes an array to store interme-

diate computations, but we should point out that in some situations, such as

the Fibonacci function, an array is not necessary. Here is the iterFib function

written without the use of an array:

static long iterFib1(int n) {

long last, nextLast, result;

last = 1;

nextLast = 1;

result = 1;

for(int i = 2; i <= n-1; i++) {

result = last + nextLast;

nextLast = last;

last = result;

}

return result;

}

Both iterFib and iterFib1 calculate Fibonacci numbers in about the same time.

Dynamic Programming 319

Finding the Longest Common Substring

Another problem that lends itself to a dynamic programming solution is find-

ing the longest common substring in two strings. For example, in the words

“raven” and “havoc”, the longest common substring is “av”.

Let’s look first at the brute force solution to this problem. Given two strings,

A and B, we can find the longest common substring by starting at the first

character of A and comparing each character to the characters in B. When a

nonmatch is found, move to the next character of A and start over with the

first character of B, and so on.

There is a better solution using a dynamic programming algorithm. The

algorithm uses a two-dimensional array to store the results of comparisons of

the characters in the same position in the two strings. Initially, each element

of the array is set to 0. Each time a match is found in the same position of the

two arrays, the element at the corresponding row and column of the array is

incremented by 1, otherwise the element is set to 0.

To reproduce the longest common substring, the second through the next

to last rows of the array are examined and a column entry with a value greater

than 0 corresponds to one character in the substring. If no common substring

was found, all the elements of the array are 0.

Here is a complete program for finding a longest common substring:

using System;

class chapter17 {

static void LCSubstring(string word1, string word2,

string[] warr1; string[]

warr2, int[,] arr) {

int len1, len2;

len1 = word1.Length;

len2 = word2.Length;

for(int k = 0; k <= word1.Length-1; k++) {

warr1[k] = word1.Chars(k);

warr2[k] = word2.Chars(k);

}

for(int i = len1-1; i >= 0; i--)

for(int j = len2-1; j >= 0; j--)

if (warr1[i] = warr2[j])

arr[i,j] = 1 + arr[i+1, j+1];

320 ADVANCED ALGORITHMS

else

arr[i,j] = 0;

}

static string ShowString(int[,] arr, string[] wordArr) {

string substr = "";

for(int i = 0; i <= arr.GetUpperBound(0))

for(int j = 0; j <= arr.GetUpperBound(1))

if (arr[i,j]>0)

substr + = wordArr[j];

return substr;

}

static void DispArray(int arr[,]) {

for(int row = 0; row <= arr.GetUpperBound(0))

for(int col = 0; col <= arr.GetUpperBound(1))

Console.Write(arr[row, col]);

Console.WriteLine();

}

static void Main() {

string word1 = "maven";

string word2 = "havoc";

string[] warray1 = new string[word1.Length];

string[] warray2 = new string[word2.Length];

string substr;

int[,] larray = new int[word1.Length, word2.Length];

LCSubstring(word1, word2, warray1, warray2, larray);

Console.WriteLine();

DispArray(larray);

substr = ShowString(larray, warray1);

Console.WriteLine();

Console.WriteLine("The strings are: " + word1 + " "

+ word2);

if (substr>"")

Console.WriteLine("The longest common substring

is: " + substr);

else

Console.WriteLine("There is no common substring");

}

}

Dynamic Programming 321

The function LCSubstring does the work of building the two-dimensional

array that stores the values that determine the longest common substring. The

first for loop simply turns the two strings into arrays. The second for loop

performs the comparisons and builds the array.

The function ShowString examines the array built in LCSubstring, check-

ing to see if any elements have a value greater than 0, and returning the

corresponding letter from one of the strings if such a value is found.

The subroutine DispArray displays the contents of an array, which we

use to examine the array built by LCSubstring when we run the preceding

program:

The encoding stored in larray shows us that the second and third characters

of the two strings make up the longest common substring of “maven” and

“havoc”. Here’s another example:

Clearly, these two strings have no common substring, so the array is filled

with zeroes.

322 ADVANCED ALGORITHMS

The Knapsack Problem

A classic problem in the study of algorithms is the knapsack problem. Imagine

you are a safecracker and you break open a safe filled with all sorts of treasures

but all you have to carry the loot is a small backpack. The items in the safe

differ in both size and value. You want to maximize your take by filling your

backpack with those items that are worth the most.

There is, of course, a brute force solution to this problem but the dynamic

programming solution is more efficient. The key idea to solving the knapsack

problem with a dynamic programming solution is to calculate the maximum

value for every value up to the total capacity of the knapsack. See Sedgewick

(1990, pp. 596–598) for a very clear and succinct explanation of the knapsack

problem. The example problem in this section is based on the material from

that book.

If the safe in the example discussed earlier has five items, the items have a

size of 3, 4, 7, 8, and 9, respectively, and values of 4, 5, 10, 11, 13, respectively,

and the knapsack has a capacity of 16, then the proper solution is to pick items

3 and 5 with a total size of 16 and a total value of 23.

The code for solving this problem is quite short, but it won’t make much

sense without the context of the whole program, so let’s look at a program to

solve the knapsack problem:

using System;

class chapter17 {

static void Main() {

int capacity = 16;

int[] size = new int[] {3, 4, 7, 8, 9};

int[] values = new int[] {4, 5, 10, 11, 13};

int[] totval = new int[capacity];

int[] best = new int[capacity];

int n = values.Length;

for (int j = 0; j <= n-1; j++)

for (int i = 0; i <= capacity; i++)

if (i >= size[j])

if (totval[i] < (totval[i-size[j]] + values[j]){

totval[i] = totval[i-size[j]] + values[j];

best[i] = j;

}

Dynamic Programming 323

Console.WriteLine("The maximum value is: " +

totval[capacity]);

}

}

The items in the safe are modeled using both the size array and the values

array. The totval array is used to store the highest total value as the algorithm

works through the different items. The best array stores the item that has the

highest value. When the algorithm is finished, the highest total value will

be in the last position of the totval array, with the next highest value in the

next-to-last position, and so on. The same situation holds for the best array.

The item with the highest value will be stored in the last element of the best

array, the item with the second highest value in the next-to-last position, and

so on.

The heart of the algorithm is the second if statement in the nested for

loop. The current best total value is compared to the total value of adding the

next item to the knapsack. If the current best total value is greater, nothing

happens. Otherwise, this new total value is added to the totval array as the

best current total value and the index of that item is added to the best array.

Here is the code again:

if (totval[i] < totval[i - size[j]] + values[j]) {

totval[i] = totval[i - size[j]] + values[j];

best[i] = j;

}

If we want to see the items that generated the total value, we can examine

them in the best array:

Console.WriteLine("The items that generate this value

are: ");

int totcap = 0;

i = capacity;

while (totcap <= capacity) {

Console.WriteLine("Item with best value: " + best[i]);

totcap + = values[best[i]];

i--;

}

324 ADVANCED ALGORITHMS

Remember, all the items that generate a previous best value are stored in the

array, so we move down through the best array, returning items until their

sizes equal the total capacity of the knapsack.

GREEDY ALGORITHMS

In the previous section, we examined dynamic programming algorithms that

can be used to optimize solutions that are found using some less-efficient

algorithm, often based on recursion. For many problems, though, resorting

to dynamic programming is overkill and a simpler algorithm will suffice.

One type of simpler algorithm is the greedy algorithm. A greedy algorithm

is the one that always chooses the best solution at the time, with no regard for

how that choice will affect future choices. Using a greedy algorithm generally

indicates that the implementer hopes that the series of “best” local choices

made will lead to a final “best” choice. If so, then the algorithm has produced

an optimal solution; if not, a suboptimal solution has been found. However,

for many problems, it is not worth the trouble to find an optimal solution, so

using a greedy algorithm works just fine.

A First Greedy Algorithm Example:
The Coin-Changing Problem

The classic example of following a greedy algorithm is making change. Let’s

say you buy some items at the store and the change from your purchase is

63 cents. How does the clerk determine the change to give you? If the clerk

follows a greedy algorithm, he or she gives you two quarters, a dime, and

three pennies. That is the smallest number of coins that will equal 63 cents

(given that we don’t allow fifty-cent pieces).

It has been proven that an optimal solution for coin changing can always

be found using the current American denominations of coins. However, if we

introduce some other denomination to the mix, the greedy algorithm doesn’t

produce an optimal solution.

Here’s a program that uses a greedy algorithm to make change (this code

assumes change of less than one dollar):

using System;

class chapter17 {

Greedy Algorithms 325

static void MakeChange(double origAmount, double

remainAmount, int[] coins) {

if ((origAmount % 0.25) < origAmount) {

coins[3] = (int)(origAmount / 0.25);

remainAmount = origAmount % 0.25;

origAmount = remainAmount;

}

if ((origAmount % 0.1) < origAmount) {

coins[2] = (int)(origAmount / 0.1);

remainAmount = origAmount % 0.1;

origAmount = remainAmount;

}

if ((origAmount % 0.05) < origAmount) {

coins[1] = (int)(origAmount / 0.05);

remainAmount = origAmount % 0.05;

origAmount = remainAmount;

}

if ((origAmount % 0.01) < origAmount) {

coins[0] = (int)(origAmount / 0.01);

remainAmount = origAmount % 0.01;

}

}

static void ShowChange(int[] arr) {

if (arr[3] > 0)

Console.WriteLine("Number of quarters: " +

arr[3]);

if (arr[2] > 0)

Console.WriteLine("Number of dimes: " + arr[2]);

if (arr[1] > 0)

Console.WriteLine("Number of nickels: " + arr[1]);

if (arr[0] > 0)

Console.WriteLine("Number of pennies: " + arr[0]);

}

static void Main() {

double origAmount = 0.63;

double toChange = origAmount;

double remainAmount = 0.0;

int[] coins = new int[4];

MakeChange(origAmount, remainAmount, coins);

326 ADVANCED ALGORITHMS

Console.WriteLine("The best way to change " +

toChange + " cents is: ");

ShowChange(coins);

}

}

The MakeChange subroutine starts with the highest denomination, quar-

ters, and tries to make as much change with them as possible. The total

number of quarters is stored in the coins array. Once the original amount is

less than a quarter, the algorithm moves to dimes, again trying to make as

much change with dimes as possible. The algorithm proceeds to nickels and

then to pennies, storing the total number of each coin type in the coins array.

Here’s some output from the program:

As we mentioned earlier, this greedy algorithm always finds the optimal

solution using the standard American coin denominations. What would hap-

pen, though, if a new coin, say a 22-cent piece, is put into circulation? In the

exercises, you’ll get a chance to explore this question.

Data Compression Using Huffman Coding

Compressing data is an important technique for the practice of computing.

Data sent over the Internet needs to be sent as compactly as possible. There

are many different schemes for compressing data, but one particular scheme

makes use of a greedy algorithm—Huffman coding. Data compressed using a

Huffman code can achieve savings of 20% to 90%. This algorithm is named

for the late David Huffman, an information theorist and computer scientist

who invented the technique in the 1950s.

Greedy Algorithms 327

When data is compressed, the characters that make up the data are usually

translated into some other representation in order to save space. A typical com-

pression scheme is to translate each character to a binary character code, or bit

string. For example, we can encode the character “a” as 000, the character “b”

as 001, the character “c” as 010, and so on. This is called a fixed-length code.

A better idea, though, is to use a variable-length code, where the characters

with the highest frequency of occurrence in the string have shorter codes and

the lower frequency characters have longer codes, since these characters are

used as much. The encoding process then is just a matter of assigning a bit

string to a character based on the character’s frequency. The Huffman code

algorithm takes a string of characters, translates them to a variable-length

binary string, and creates a binary tree for the purpose of decoding the binary

strings. The path to each left child is assigned the binary character 0 and each

right child is assigned the binary character 1.

The algorithm works as follows: Start with a string of characters you want

to compress. For each character in the string, calculate its frequency of occur-

rence in the string. Then sort the characters into order from the lowest fre-

quency to the highest frequency. Take the two characters with the smallest

frequencies and create a node with each character (and its frequency) as chil-

dren of the node. The parent node’s data element consists of the sum of the

frequencies of the two child nodes. Insert the node back into the list. Continue

this process until every character is placed into the tree.

When this process is complete, you have a complete binary tree that can

be used to decode the Huffman code. Decoding involves following a path of

0s and 1s until you get to a leaf node, which will contain a character.

To see how all this works, examine Figure 17.2.

Now we’re ready to examine the C# code for constructing a Huffman code.

Let’s start with the code for creating a Node class. This class is quite a bit

different from the Node class for binary search trees, since all we want to do

here is store some data and a link:

public class Node {

HuffmanTree data;

Node link;

public Node(HuffmanTree newData) {

data = newData;

}

}

328 ADVANCED ALGORITHMS

r 8 s 9 t 13 m 15 a 45

t 13 m 15 a 42

a 42

r 8 s 9

2817

r 8

a 42

s 9

17

1

2

3

4

5

a 42

87

t 13 m 15

28

r 8 s 9

17

45

t 13 m 15

r 8

0

0 1

1

s 9

0 1

28

0 1

0 10 1

0 1

0 10 1

0 1

17

45

t 13 m 15

FIGURE 17.2. Constructing a Huffman Code.

Greedy Algorithms 329

The next class to examine is the TreeList class. This class is used to store

the list of nodes that are placed into the binary tree, using a linked list as the

storage technique. Here’s the code:

public class TreeList {

private int count = 0;

Node first;

public void AddLetter(string letter) {

HuffmanTree hTemp = new HuffmanTree(letter);

Node eTemp = new Node(hTemp);

if (first == null)

first = eTemp;

else {

eTemp.link = first;

first = eTemp;

}

count++;

}

public void SortTree() {

TreeList otherList = new TreeList();

HuffmanTree aTemp;

while (!(this.first == null) {

aTemp = this.RemoveTree();

otherList.InsertTree(aTemp);

}

this.first = otherList.first;

}

public void MergeTree() {

if (!(first == null))

if (!(first.link == null)) {

HuffmanTree aTemp = RemoveTree();

HuffmanTree bTemp = RemoveTree();

HuffmanTree sumTemp = new HuffmanTree();

sumTemp.SetLeftChild(aTemp);

sumTemp.SetRightChild(bTemp);

330 ADVANCED ALGORITHMS

sumTemp.SetFreq(aTemp.GetFreq() +

bTemp.GetFreq());

InsertTree(sumTemp);

}

}

public HuffmanTree RemoveTree() {

if (!(first == null)) {

HuffmanTree hTemp;

hTemp = first.data;

first = first.link;

count--;

return hTemp;

}

return null;

}

public void InsertTree(HuffmanTree hTemp) {

Node eTemp = new Node(hTemp);

if (first == null)

first = eTemp;

else {

Node p = first;

while (!(p.link == null)) {

if ((p.data.GetFreq()<= hTemp.GetFreq()) &&

(p.link.data.GetFreq() >= hTemp.GetFreq())

break;

p = p.link;

}

eTemp.link = p.link;

p.link = eTemp;

}

count++;

}

public int Length() {

return count;

}

}

Greedy Algorithms 331

This class makes use of the HuffmanTree class, so let’s view that code now:

public class HuffmanTree {

private HuffmanTree leftChild;

private HuffmanTree rightChild;

private string letter;

private int freq;

public HuffmanTree() {

this.letter = letter;

}

public void SetLeftChild(HuffmanTree newChild) {

leftChild = newChild;

}

public void SetRightChild(HuffmanTree newChild) {

rightChild = newChild;

}

public void SetLetter(string newLetter) {

letter = newChild;

}

public void IncFreq() {

freq++;

}

public void SetFreq(int newFreq) {

freq = newFreq;

}

public HuffmanTree GetLeftChild() {

return leftChild;

}

public HuffmanTree GetRightChild() {

return rightChild;

}

public int GetFreq() {

return freq;

}

}

332 ADVANCED ALGORITHMS

Finally, we need a program to test the implementation:

static void Main() {

string input;

Console.Write("Enter a string to encode: ");

input = Console.ReadLine();

TreeList treeList = new TreeList();

for(int i = 0; i < input.Length; i++)

treeList.AddSign(input.Chars(i));

treeList.SortTree();

int[] signTable = new int[input.Length];

int[] keyTable = new int[input.Length];

while(treeList.length > 1)

treeList.MergeTree();

MakeKey(treeList.RemoveTree(), "");

string newStr = translate(input);

for(int i = 0; i <= signTable.Length - 1; i++)

Console.WriteLine(signTable[i] + ": " +

keyTable[i]);

Console.WriteLine("The original string is " + input.

Length * 16 + " bits long.");

Console.WriteLine("The new string is " + newStr.Length

+ " bits long.");

Console.WriteLine("The coded string looks like this:

" + newStr);

}

static string translate(string original) {

string newStr = "";

for(int i = 0; i <= original.Length-1; i++

for(int j = 0; j <= signTable.Length-1; j++)

if (original.Chars(i) == signTable[j])

newStr + = keyTable[j];

return newStr;

}

static void MakeKey(HuffmanTree tree, string code) {

int pos = 0;

if (tree.GetLeftChild == null) {

signTable[pos] = tree.GetSign();

Greedy Algorithms 333

keyTable[pos] = code;

pos++;

} else {

MakeKey(tree.GetLeftChild, code + "0");

MakeKey(tree.GetRightChild, code + "1");

}

}

A Greedy Solution to the Knapsack Problem

Earlier in this chapter, we examined the knapsack problem and wrote a pro-

gram to solve the problem using dynamic programming techniques. In this

section, we look at the problem again, this time looking for a greedy algorithm

to solve the problem.

To use a greedy algorithm to solve the knapsack problem, the items we are

placing in the knapsack need to be “continuous” in nature. In other words,

they must be items like cloth or gold dust that cannot be counted discretely. If

we are using these types of items, then we can simply divide the unit price by

the unit volume to determine the value of the item. An optimal solution is to

place as much of the item with the highest value in the knapsack as possible

until the item is depleted or the knapsack is full, followed by as much of the

second highest item as possible, and so on. The reason we can’t find an optimal

greedy solution using discrete items is that we can’t put “half a television” into

a knapsack.

Let’s look at an example. You are a carpet thief and you have a knapsack

that will store only 25 “units” of carpeting. Therefore, you want to get as

much of the “good stuff ” as you can in order to maximize your take. You

know that the carpet store you’re going to hit has the following carpet styles

and quantities on hand (with unit prices):

� Saxony: 12 units, $1.82
� Loop: 10 units, $1.77
� Frieze: 12 units, $1.75
� Shag: 13 units, $1.50

The greedy strategy dictates that you take as many units of Saxony as

possible, followed by as many units of Loop, then Frieze, and finally Shag.

334 ADVANCED ALGORITHMS

Being the computational type, you first write a program to model your heist.

Here is the code you come up with:

public class Carpet : IComparable {

private string item;

private float val;

private int unit;

public Carpet(string i, float v, int u) {

item = i;

val = v;

unit = u;

}

public int CompareTo(Carpet c) {

return (this.val.CompareTo(c.val));

}

public int GetUnit() {

return unit;

}

public string GetItem() {

return item;

}

public float GetVal() {

return val * unit;

}

public float ItemVal() {

return val;

}

}

public class Knapsack {

private float quantity;

SortedList items = new SortedList();

string itemList;

public Knapsack(float max) {

quantity = max;

}

Greedy Algorithms 335

public void FillSack(ArrayList objects) {

int pos = objects.Count-1;

int totalUnits = 0;

float totalVal = 0.0;

int tempTot = 0;

while (totalUnits < quantity) {

tempTot + = (Carpet)objects[pos].GetUnit();

if (tempTot <= quantity) {

totalUnits + = (Carpet)objects[pos].GetUnit();

totalVal + = (Carpet)objects[pos].GetVal();

items.Add((Carpet)objects[pos].GetItem(),

(Carpet)objects[pos].GetUnit());

} else {

float tempUnit = quantity - totalUnits;

float tempVal = (Carpet)objects[pos].ItemVal()*

tempUnit;

totalVal + = tempVal;

totalUnits + = (int)tempUnit;

items.Add((Carpet)objects[pos].GetItem(), tempUnit);

}

pos--;

}

}

public string GetItems() {

foreach (Object k in items.GetKeyList())

itemList + = k.ToString() + ": " + items[k].

ToString() + " ";

return itemList;

}

}

static void Main() {

Carpet c1 = new Carpet("Frieze", 1.75, 12);

Carpet c2 = new Carpet("Saxony", 1.82, 9);

Carpet c3 = new Carpet("Shag", 1.5, 13);

Carpet c4 = new Carpet("Loop", 1.77, 10);

ArrayList rugs = new ArrayList();

rugs.Add(c1);

rugs.Add(c2);

336 ADVANCED ALGORITHMS

rugs.Add(c3);

rugs.Add(c4);

rugs.Sort();

Knapsack k = new Knapsack(25);

k.FillSack(rugs)

Console.WriteLine(k.getItems);

}

The Carpet class is used for two reasons: to encapsulate the data about each

type of carpeting and to implement the IComparable interface, so we can sort

the carpet types by their unit cost.

The Knapsack class does most of the work in this implementation. It pro-

vides a list to store the carpet types and it provides a method, FillSack, to

determine how the knapsack gets filled. Also, the constructor method allows

the user to pass in a quantity that sets the maximum number of units the

knapsack can hold.

The FillSack method loops through the carpet types, adding as much of

the most valuable carpeting as possible into the knapsack, then moving on to

the next type. At the point where the knapsack becomes full, the code in the

Else clause of the If statement puts the proper amount of carpeting into the

knapsack.

This code works because we can cut the carpeting wherever we want. If

we were trying to fill the knapsack with some other item that does not come

in continuous quantities, we would have to move to a dynamic programming

solution.

SUMMARY

This chapter examined two advanced techniques for algorithm design:

dynamic programs and greedy algorithms. Dynamic programming is a tech-

nique where a bottom-up approach is taken to solving a problem. Rather than

working its way down to the bottom of a calculation, such as done with recur-

sive algorithm, a dynamic programming algorithm starts at the bottom and

builds on those results until the final solution is reached.

Greedy algorithms look for solutions as quickly as possible and then stop

before looking for all possible solutions. A problem solved with a greedy

algorithm will not necessarily be the optimal solution because the greedy

Exercises 337

algorithm will have stopped with a “sufficient” solution before finding the

optimal solution.

EXERCISES

1. Rewrite the longest common substring code as a class.

2. Write a program that uses a brute force technique to find the longest com-

mon substring. Use the Timing class to compare the brute force method

with the dynamic programming method. Use the program from Exercise 1

for your dynamic programming solution.

3. Write a Windows application that allows the user to explore the knapsack

problem. The user should be able to change the capacity of the knapsack,

the sizes of the items, and the values of the items. The user should also

create a list of item names that is associated with the items used in the

program.

4. Find at least two new coin denominations that make the greedy algorithm

for coin changing shown in the chapter produce suboptimal results.

5. Using a “commercial” compression program, such as WinZip, compress

a small text file. Then compress the same text file using a Huffman code

program. Compare the results of the two compression techniques.

6. Using the code from the “carpet thief” example, change the items being

stolen to televisions. Can you fill up the knapsack completely? Make

changes to the example program to answer the question.

References

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Clifford-

Stein. Introduction to Algorithms. Cambridge, MA: The MIT Press, 2001.

Ford, William and William Topp. Data Structures with C++. Upper Saddle

River, NJ: Prentice Hall, 1996.

Friedel, Jeffrey E. F. Mastering Regular Expressions, Sebastopol, CA: O’Reilly

and Associates, 1997.

LaFore, Robert. Data Structures and Algorithms in Java, Corte Madera, CA:

Waite Group Press, 1998.

McMillan, Michael. Object-Oriented Programming With Visual Basic.NET, New

York: Cambridge University Press, 2004.

Sedgewick, Robert. Algorithms in C, Reading, MA: Addison-Wesley, 1998.

Weiss, Mark Allen. Data Structures and Algorithm Analysis in Java, Reading,

MA: Addison-Wesley, 1999.

339

Index

& (ampersand) operator 134

($) dollar sign, assertion

made by 157

.NET environment 18

application domain 19

as arrays and strings 5

timing test for 18

.NET Framework

array class 3

ArrayLists 41

collection classes in 1

dictionary classes 8

Stack class 69

.NET Framework class library

System

data structures 1

.NET Framework library 11

ArrayList 35

.NET version of c# 93

[] brackets, enclosing a

character class 155

\b assertion 157

\d character class 156

\D character class 156

\S character class 156

\w character class 156

\W character class 156

A

Add method 240

for a dictionary object 166

in a BucketHash class 181

of the arraylist 36

storing data in a collection 12

AddEdge method 288

AddRange method 38, 39

AddVertex method 288

Adelson-Velskii, G. M. 263

adjacency matrix 286, 288, 290,

291

adjustShortPath method 307, 308

advanced data structures

for searching 263

algorithms 1

advanced sorting 42, 249

binary search 62, 64, 66

Bubble Sort 45

determining node position 222

Dijkstra’s algorithms 303, 305,

312

greedy 152, 303, 314, 324

HeapSort 254

341

342 INDEX

algorithms (cont.)

implementation 290

Insertion Sort 49

iterative 65

knapsack problem 322

minimum spanning tree 299

QuickSort 259

recursive 65

selection sort 48

ShellSort 249

shortest-path 302

sorting 42

topological sorting 289

And operator 98, 245

anonymous group 158

append method 140

application domain 19

arithmetic expression, storing

as string 7, 74

Array Class 26

built-in binary search

method 65

for retrieving metadata 28

array class method 28

array elements 28

array Metadata 28

array object 26

array techniques 125

ArrayList class 26, 35

applications of 36

members of 35

ArrayList object 35

ArrayLists 3, 11, 12

addrange/insertrange

method 38

and resizing 41

as buckets 181

capacity property 37

comparing to arrays 26

contained in

CollectionBase class 12

indexof method 38

remove method 37

ArrayLists add method 81

ArrayLists object 70

arrays

as class objects 3

as linear collection storage 3

compared to BitArray Class 94

compared to linked list 194, 195

concerning issues with 194

declaring 27

heaps building 254

indexed data collections 26

initializing 27

Jagged Arrays 32

multidimensional arrays 30

new elements insertions to 3

parameter arrays 32

static/dynamic 3

arrBits 114

ASC function 127

ASCII code 127

ASCII values 177, 240

assertions 156, 160

Zero-Width Lookahead 160

Zero-Width Lookbehind 160

associations 8

asterisk (∗) 148

as quantifier 151

as the greedy opertaor

AVL trees 263

fundamentals 263

implementing 264

nodes in 264, 266

rotation 263

AVLTree class

deletion method 268

Index 343

B

benchmark tests 17

benchmarking. See timing

tests

Big O analysis 1

bin configuration 87

binary number

converting to decimal

equivalents 97

binary number system 96

binary numbers 94, 96

combining with bitwise

operators 99

comparing bit-by-bit 98

manipulating 97

binary search 55, 62

recursive 64

binary search algorithm 64

using iterative and

recursive code 66

binary search method 64, 66

binary search trees 218, 220, 235

building 221

finding node and

minimum/maximum

values in 227

handling unbalanced 263

inserting series of numbers

into 225

leaf node (with One Child)

removal 230

leaf node (with two

children) removal 230

leaf node removal 228

transversing 224

binary trees 9, 218, 220

BinarySearchTree (BST) class 221,

222, 268

binNumber 113

binNumber array (binary) 113

bins, queues representing 88

bit

index of bit to set 113

bit mask 107

bit pattern

for an integer value 104

Bit sets 94

bit shift

demonstration application 107

bit value

retrieving 111

BitArray

binNumber 113

BitSet 113

compared with array for

sieve of Eratosthenes 117

retrive a bit value 111

similar to arraylist 110

storing set of boolean

values 117

BitArray class 94, 110

data structure to store set

members 244

finding prime numbers 94

methods and properties 113

storing sets of bits 117

writing the seive of

Eratosthenes 94, 96

bitBuffer variable 107

Bits

in VB.NET 96

BitSet 113

bitshift operators 94, 97, 103

bitwise operators 94, 97, 98

and applicability 99

and ConvertBits method 99

similar to boolean values 98

truth tables 98

344 INDEX

black nodes 268

Boolean truth table 98

Boolean value 113

breadth-first search 293, 296

BubbleSort algorithm 45, 46

BubbleSort method 47

Bucket Hashing 181

buckets 181

BuildArray subroutine 90

BuildGlossary subroutine 189

Byte values 96, 111

C

C#

and arrays in 26

and regular expression 156

binary tree in 220

built-in Hashtable class 183

CStack 70

dimensions of arrays 30

in bitwise operators 99

peek operation 69

role of sets 237

strings as class object 3

C# code

for constructing Huffman

code 327

C# strings 3

C# struct 4

C#, arrays 3

Capacity property

of the ArrayList object 35

CapturesCollection Class 161

caret (∧) 155

Carpet class 336

carpet thief program 337

CArray class 44

in prime number sorting 95

storing numbers 44

CArray class object 44

case-insensitive matching 163

character array, instantiating a

string from 120

character classes 153, 155

[aeiou] 155

period (.) 153

characters

Unicode values of 127

Chars method 83

Chars property 139

child

deleting a node with one 230

Circular linked list 203

Class Data Members 239

class method 29

Clear method 13, 76

of the ArrayList Class 70

Coin-Changing Problem 324

Collection Classes 11, 12

built-in enumerator 11

implementing using arrays 11

in.NET Framework 1

storing class object 11

Collection operations 2

CollectionBase class 11

inner list 12

collections 1, 2

linear and nonlinear 2

collections count 2

Collision 177

collNumber 183

comma-delimited string 125

comma-separated value

strings (CSVs) 125

compareTo method 127

Compression of data 326

computer programming

role of stacks 93

Index 345

Concat method 134

connected unidirected graph 284

connections

between network 299

constructor method 239

for CSet class 239

for CStack 70

for String class 120

constructors

for Stack class 73

Contains method 37, 77

ContainsKey method 188

ContainsValue method 188

continuous items 333

ConvertBits function 107

ConvertBits method 99

copy constructors 184

CopyTo method 77, 169

cost. See also weight of the

vertex 283

Count method 12, 167

Count property 70

and stack operation 69

CSet class 243

BitArray implementation of 244

CSVs (comma-separated

value strings) 125

CType function 169

custom-built data structure or

algorithm 66

cycle 284

D

Data compression

Huffman code 326

data fields 206

data items, memory reserved

for 18

data members

for timing classes 21

data structures 1, 68

data structures and algorithms 1

data types

numeric 5

default capacity

hash table with 185

of queue 82

default constructor 21, 73

for base class 167

Delete method 233

delVertex. See also graphs 291

DeMorgan’s Laws 239

depth of a tree 220

depth-first search 293, 294

Dequeue method 91, 92

Dequeue operation 7, 80, 90

dictionary 8, 42, 165

key-value pairs 8

dictionary, associative arrays 8

DictionaryBase 166

DictionaryBase class, 165. See

also SortedList Class 172

DictionaryBase Methods 169

dictionary-based data

structure

SortedList 165

DictionaryEntry array 169

DictionaryEntry objects 166, 167,

170, 174

Difference method 242

digraph 284

Dijkstra, Edsger 303

Dijkstra’s algorithm 308

direct access collections 2

and struct 3

string 3

directed graph. See digraph

displaying method 47

346 INDEX

displayNode method 221, 226

displayPaths method 308

dispMask variable 107

DistOriginal class 306

distributive set property 238

Double Hashing 181, 183

double quotation marks

enclosing string literals 120

double rotation

in an AVL tree 264

doubly-linked list 200

node deletion 201

Remove method 201

duration members

of Timing class 21

dynamic programming 314

arrays for storing data 318

E

ECMAScript option

for regular expression 163

edges

nodes connected by 218

representing as graph 286

elements

accessing a arrays 28

accessing multidimensional

arrays 29, 31

adding to an array 3

empty set 238

empty string 120

EnQueue operation 7, 80

EnsureCapacity method 139

Enumerator object

for a hash table 185

equal set 238

equalities for set 239

equality, testing for 26

Equals method 127

equivalent table

for bit values 98

Eratosthenes 94

ExplicitCapture

for regular expression 163

expression evaluator 74, 77

extra connections

in a network 299

F

False bit 98

Fibonacci numbers 315

computaion using recursive

and iterative version 317

FIFO (First-In, First-Out)

structures 79, 80

FillSack method 336

finalizer method 19

FindLast method 202

FindMax method 282

FindMin function 59

FindMin() method 227

First-In, First-Out structures

(FIFO) 79, 80

fixed-length code 327

For Each loop 36

For loop 28, 107, 258,

280

formatted string 140

found item, swapping with

preceding 61

frequency of occurrence

for a character in a string 327

frequently searched-for items,

placing at beginning 59

G

garbage collection 18

garbage collector, calling 18

Index 347

generalized indexed

collections 7

generic class 16

Generic Linked List 214

Generic Linked List Class 214

Generic Node Class 214

generic program

data type placeholder 14

generic programming 1, 14

generic Queue 82

generic Swap function 14

generics 1

genRandomLevel method 280

Get method

BitSet BitArray 111

to retrieve bits stored 111

GetAdjUnvisitedVertex

method 294

getCurrent method 207

GetEnumerator method 169

GetLength method 29

getMin method 307, 308

GetRange method 39, 40

GetSuccessor method 233

GetType method 29

for data type of array 29

GetUpperBound method 29

GetValue method 28

global optimum 314

glossary, building with a hash

table 189

Graph Class 285, 306

graph search algorithm

minimum spanning tree 299

graphs 10

building 287

minimum spanning trees 299

real world systems modeled

by 284

represented in VB.NET 283

searching 293

topological sorting 289

vertex removal 291

weighted 302

Greedy algorithms 303, 314, 324

group

nonlinear collection,

unordered 9

group collections 9

Grouping Constructs 157

H

HandleReorient method 275

hash function 8, 176, 177, 181

in a BucketHash class 181

Hash table

addition/removal of

elements 182

building glossary or

dictionary 189

hash function 8

key/value pairs stored in 166

load factor 182

remove method 167

retrieving data 8

retrieving keys and values

from 185

Hashtable class 176, 184

.NET Framework library 176

methods of 74

Hashtable objects

instantiating and adding

data to 184

load factor 184

heap 18

building 254

heap sort 9

HeapSort Algorithm 254

348 INDEX

hierarchical collections 2, 8

and tree 8

hierarchical manner, storing

data 218

Horner’s rule 179

HTML anchor tag 164

HTML formatting 136

Huffman code 327

Huffman code algorithm 327

Huffman coding 326

data compression using 326

Huffman, David 326

HuffmanTree class 331

I

Icollection

and arraylists 38

ICollection interface 72

IComparable interface 264, 336

IDictionary interface 166

IEnumerable interface 11

If-Then statement,

short-circuiting 37, 61

IgnoreCase option

for regular expression 163

IgnorePatternWhiteSpace

option for regular

expression 163

immutable String objects 119

immutable strings 3

increment sequence 249

index-based access

into a SortedList 174

IndexOf method 38, 122

infix arithmetic 74

initial capacity

for a hash table 184

initial load factor

for a hash table 184

initialization list 27

inner loop

in an insertion sort 50

in an selectionSort 48

InnerHashTable 166

InnerHashTable object 167

InnerList 12

inOrder method 225, 226

inorder successor 230

inorder traversal method 224, 225

Insert method 141

InsertAfter method 207

InsertBefore method 207

InsertBeforeHeader Exception

class 207

Insertion method 201

Insertion Sort viii, 49

loops in 50

speed of 52

Int32 structure 5

Integer array 33

Integer data type 5

integer index, 2, 8. See also

direct access collections

integer set members 244, 248

Integer variable 70

integers

bit pattern determination 104

converting into binary

numbers 104

Integer-to-Binary converter

application 104

intersection 9, 238

Intersection method 241

invalid index 38

IP addresses 166, 172

IPAddresses class 168

isArray class method 29

IsMatch method 149

Index 349

isSubset Method 241

Item method

calling 70

key-value pair 185

of HashTable class 167

retrieving value 166, 167

Iterator class 200, 206

insertion methods 207

iterFib function 318

J

Jagged arrays 32

Join method 124

from an array to a string 124,

126

K

Key

retrieving value based on 186

Key property

for a dictionaryEntry object 170

key value, 220. See also key

value pairs

key-value pairs. See also key

value 165

KeyValuePair Class 171

KeyValuePair object

instantiating 171

knapsack class 336

knapsack problem 322

greedy solution to 333

Knuth, Don 11

L

Landis, E. M. 263

Last-In, First-Out (LIFO)

structures 7

lazy deletion 268

lazy quantifier 153

LCSubstring function 321

left shift operator (<<) 103

left-aligning a string 132

Length method

for multi-dimensional array 29

Length property 139

of StringBuilder class 138

levels

breaking tree into 220

determining for skip lists

of links 277

LIFO (Last-In, First-Out

structures) 7

Like operator

linear collections 7

and array 2

direct/sequential access 2

list of elements 2

linear list 6

direct access to elements 6

ordered or unordered 6

priority queue 7

sequential access

collections 6

stacks

last in, first-Out structures 7

stacks and queues 7

linear probing 183

link member

of node 197

linked list

design modifications in 200

doubly/circular linked list 200

insertion of items 196

object-oriented design 196

removal of items 196

LinkedList class 197, 206, 207,

208, 214, 217

LinkedListNode 214

350 INDEX

load factor 184

local optima 314

logical operators 98

Lookbehind assertions 160, 161

loop 284

M

machine code, translating

recursive code to 314

MakeChange subroutine 326

mask. See also bit mask 107

converting integer into a

binary number 104

Match class 148, 149

MatchCollection object 150

matches

at the beginning of a string

or a line 156

at the end of the line 157

specifying a definite

number of 152

specifying a minimum and

a maximum number of 152

specifying at word

boundaries 157

MaxCapacity property 138

merge method, called by

RecMergeSort 252

MergeSort algorithm 251

metacharacter 147

asterisk (∗) 148

minimum spanning tree

algorithm 299

modern operating systems

tree collection 9

moveRow method 291

multi-dimensional array 29, 30

accessing elements of 31

performing calculations on

all elements 31

Multiline option

for regular expression 163

MustInherit class 166

mutable String objects 137

myfile.exe 148

N

named groups 158

native data type 120

negative integers, binary

representation of 105

negative lookahead assertion 160

network graph 10

Node class 196, 200

nodes

connected by edges 10

in linked list 195

of a tree collection 8

nonlinear collections

hierarchical and group

collections 8

trees, heaps, graphs and

sets 2

unordered group 9

NP-complete problems 10

NUM VERTICES constant of

the graph class 288

numElements 250

numeric codes for characters 127

O

object-oriented programming

(OOP) 11, 70

code bloat 14

octal, converting numbers

from decimal to 78

Index 351

OOP (object-oriented

programming) 11

open addressing 181, 183

operations, performed on sets 238

optimal solution

for greedy algorithm 324

Or operator 245

ordered graph 284

ordered list 6

organizational chart 2

ORing 101

P

PadLeft method 132

PadRight method 132

palindrome 71, 93

ParamArray keyword 32

parameter arrays 32

parameterized constructor 197

parentheses (), surrounding

regular expression 157

Pareto distributions 60

Pareto, Vilfredo 60

Parse method

Int32 5

Path. See also vertices

sequence in graph 284

finding the shortest in

graph 302

Path() method 306

Pattern matching 147

Peek method. See Queue

operations

period (.)character class 153

period matches 154

pig Latin 146

pivot value 262

plus sign (+) quantifier 151

Pop method 70, 73

Pop operation. See stack

operations

postfix expression evaluator 93

postorder traversals 224, 226

PQueue class 91

code for 91

preorder traversal method 224

primary stack operations 74

PrintList method 199

Priority Queues 90

deriving from Queue class 90

Private constructor 279

for the SkipList class 278

probability distribution 277

Probability distributions 60

Process class 19

process handling 90

Property method 264

Public constructor 279

Pugh, william 277

punch cards 86

Push method 74

Q

Quadratic probing 183

quantifiers 151

asterisk (∗) 151

question mark (?)

quantifier 151

Queue class 68, 80,

90

implemention using an

ArrayList 81

sample application 82

Queue object 82

Queue operations 80

Peek method 70, 76, 80

352 INDEX

queues 68, 80

and applications 93

changing the growth factor 82

First-In, First-Out structure 7

for breadth-first search 296

used in sorting data 86

QuickSort algorithm 259

improvement to 262

R

radix sort 87

random number generator 44

range operators

in like comparisons

Rank property 29

readonly Property 264

rebalancing operations. See

AVL trees

recMergeSort method 252

recMergeSort subroutines 253

recursion

base case of 252

reverse of 314

recursive call 226, 315

recursive code, transting

to machine code 314

recursive program 315

RedBlack class 270,

275

red-black tree 263, 268

implementation code 270

insertion of items 269

rules for 269

Redim Preserve statements 3

reference types 18

RegEx class 147, 148

regular array 95

regular expressions 147

compiling options 163

for text processing and

pattern matching 164

in C# 148

metacharacters 147

modifying using assertions 156

myfile.exe 148

options 163

searches and substitution

in strings 147

surrounding parentheses 157

working with 148

Remove method 12

RemoveAt method 38

Replace method 150

right shift operator (>>) 103

root node 9, 219

RSort subroutine 90

S

searching 42

Searching Algorithms 55

Selection Sort 48

compared with other

sorting algorithms 53

SelectionSort algorithm 48

code to implementation 48

SeqSearch method 60

compared with Bubble sort 61

self-organisation 60

sequential access collections 6

Sequential search 55

implementation of 55

minimum and maximum

values search by 58

speeding up 59

Sequential search function 57

Set class 237

implementation using Hash

table 239

Index 353

Set method 113

set of edges 10

set of nodes 10

set operations 9

SetAll method 113

Sets 237

operations performed on 238

properties defined for 238

remove/size methods 240

unordered data values 9

SetValue method 28

comparing with

multidimensional array 31

Shell, Donald, 249. See also

ShellSort algorithm

ShellSort Algorithm 249

shortest-path algorithm 302

showVertex method 300

sieve of Eratosthenes 94, 117

using a BitArray to write 114

using integers in the array 96

skip lists 263, 275

fundamentals 275

implementation 277

SkipList class 281

public/private constructor 278

Sort method

in several. NET Framework

library classes 262

SortedList 165

SortedList class 165, 172

Sorting 42, 44, 45, 87

data with Queue 86

Sorting algorithms 42

Bubble Sort 45

time comparisons for all

sorting algorithms 51

Sorting data

algorithms for 53

Sorting process 46

sorting techniques 43

sPath array 308

splay tree 263

Split method 124

string into parts 124

Stack class 68, 70, 72, 73, 78

Stack Constructor Methods 73

stack object 73

stack operations 7, 74

Pop operation 69

pushing, popping, and

peeking 17

stacks 7, 18, 68

contains method 77

in programming language

implementations 68

Last-in, First-out (LIFO)

data structure 69

Stacks applications 7

stacks, data structure 79

string array 113, 125

String class 119

compared to StringBuilder 143

Like operator

methods involved 124

methods of 121

PadRight/PadLeft method 132

String class methods 83

string literals 119, 120, 141

String objects 119

comparing in VB.NET 126

concatenating 134

instantiating 120

string processing 119, 130, 145,

147

StringBuffer class 146

StringBuilder class viii, 3, 119,

137, 138, 142, 143, 145

354 INDEX

StringBuilder objects

and Append method 140

constructing 138

modifying 139

obtaining and setting

information about 138

strings 119

aligning data 132

breaking into indivisual

pieces of data 124

building from arrays 126

collection of characters 3

comparing to patterns

converting from lowercase

to uppercase 135

defining range of characters

in 154

finding longest common

substring 319

in VB.NET 121

length of 121, 122

matching any character in

methods for comparing 126

methods for manipulating 130

operation performed 121

palindrome 71

replacing one with another 142

StartsWith and EndsWith

comparison methods 129

struct 3

subroutine DispArray 321

Substring method 122

Swap function 14

System.Array class 26

T

text file 191

Text Processing 147

TimeSpan data type 21

Timing class 1

and data members 21

measurement of data

structure and algorithms 1

timing code 18, 19,

21

moving into a class 23

Timing Test class 21

Timing tests 17

for. NET environment 18

oversimplified example 17

ToArray method 39, 78

transfer of contents 40

topological sorting 289

methods of 290

TopSort method 292

ToString method 143, 170

Traveling Salesman problem 10

traversal methods 224

tree

leaf 220

set of nodes 218

tree collection 8

applications of 9

elements of 8

tree transversal 220

TreeList class 329

Trim method 135

TrimEnd methods 135

True bit 98

two-dimensional array 33

building LCSubstring

function 321

decleration 30

result storage 319

U

Unicode character set. See

strings

Index 355

Unicode table 127

Union 9, 238

Union method 241

Union operation 241

universe 238

unordered array, searching 58

unordered graph 284

unordered list 6

upper bound

of array 62, 110,

262

utility methods

of Hashtable class 187

V

value. See also Boolean value 113

Value property

for DictionaryEntry object 170

Value types 18

variable-length code 327

Variables

assigning the starting time

to 23

stored on heap 18

stored on stack 18

VB.NET

manipulation of Bits 96

skip list 277

VB.NET applications 97

vertex 283

Vertex class

building 285

for Dijkstra’s algorithms 305

Vertices

in graph 283, 284, 312

representing 285

Vertices sequence in graph 284

Visual Studio.NET 46

W

weight of the vertex 283

wildcards

Windows application

bit shifting operators 107

X

Xor operator 99

Z

zero-based array 170

